

COMBIVERT F6/S6

PROGRAMMING MANUAL

| Control Application / Compact / Pro – V2.9

Translation of the original manual Document 20264538 EN 01

1 Preface

The hardware and software described in this ducument are products of KEB. The information contained in this document is valid at the time of publishing. KEB reserves the right to update this document in response to misprints, mistakes or technical changes.

1.1 Signal words and symbols

Certain procedures within this document can cause safety hazards during the installation or operation of the device. Refer to the safety warnings in this document when performing these procedures. Safety signs are also located on the device where applicable. A safety warning is marked by one of the following warning signs:

A DANGER

Dangerous situation, which will cause death or serious injury if this safety warning is ignored.

MARNING

Dangerous situation, which may cause death or serious injury if this safety warning is ignored.

A CAUTION

Dangerous situation, which may cause minor injury if this safety warning is ignored.

NOTICE

Situation, which can cause damage to property if this safety warning is ignored.

RESTRICTION

Used when the following statements depend on certain conditions or are only valid for certain ranges of values.

Used for informational messages or recommended procedures.

1.2 More symbols

- ► This arrow starts an action step.
- / Enumerations are marked with dots or indents.
- => Cross reference to another chapter or another page.

Note to further documentation.

Document search on www.keb.de

1.3 Laws and guidelines

KEB Automation KG confirms with the EC declaration of conformity and the CE mark on the device nameplate that our device complies with the essential safety requirements.

The CE mark is located on the name plate. The EU declaration of conformity can be downloaded from our website if required

1.4 Warranty

The warranty on design, material or workmanship for the acquired device is given in the current terms and conditions.

Here you will find our current terms and conditions.

AGB

Further agreements or specifications require a written confirmation.

1.5 Support

Although multiple applications are referenced, not every case has been taking into account. If you require further information or if problems occur which are not referenced in the documentation, you can request the necessary information via the local KEB Automation KG agency.

The use of our units in the target products is beyond of our control and therefore exclusively the responsibility of the machine manufacturer, system integrator or customer.

The information contained in the technical documentation, as well as any user-specific advice in spoken and written and through tests, are made to best of our knowledge and information about the application. However, they are considered for information only without responsibility. This also applies to any violation of industrial property rights of a third-party.

Selection of our units in view of their suitability for the intended use must be done generally by the user.

Tests can only be done by the machine manufacturer in combination with the application. They must be repeated, even if only parts of hardware, software or the unit adjustment are modified.

1.6 Copyright

The customer may use the instructions for use as well as further documents or parts from it for internal purposes. Copyrights are with KEB Automation KG and remain valid in its entirety.

Other wordmarks or/and logos are trademarks ($^{\text{TM}}$) or registered trademarks ($^{\text{R}}$) of their respective owners and are listed in the footnote on the first occurrence.

Content

1 ł	Preta	ace	3
1 1 1 1	1.1 1.2 1.3 1.4 1.5	Signal words and symbols	4 4 4 4
2 E	Basid	c Safety Instructions	14
2	2.1 2.2 2.3 2.4	Target group Validity of this manual Electrical connection Start-up and operation	15 16
3 F	Prod	uct Description	17
3	3.1 3.2 3.3	Product featuresFunctional overview	17
4 I	Motic	on Control	20
4	4.1	State machine	20
4 4 4	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5	Changes of the state machine Control word Statusword Display of the actual state Affect the behaviour of the state machine	24 26 27
4	4.2	Brake control	30
4 4 4 4	1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7	Specification brake control F6-A / S6-A or F6-P S6-P Specification brake control F6-K / S6-K Functionality Characteristics of the brake control Influence of the brake control on the state machine Times of the brake control Status of the brake control	30313235
4	4.3	Errors and warnings	37
4	4.3.1 4.3.2 4.3.3	Errors	
4	4.4	Protection functions	54
4 4 4 4 4 4 4	1.4.1 1.4.2 1.4.3 1.4.4 1.4.5 1.4.6 1.4.7 1.4.8 1.4.9 1.4.10	Overload (OL)	
4 4 4	1.4.7 1.4.8 1.4.9	Fieldbus watchdog	

		Monitor the speed difference	
	4.4.12	9 99 9	
	4.4.13	Safety Stop from safety module	
	4.4.14	Error underpotential (UP / PUready)	
	4.4.15		. 80
	4.4.16	Overspeed (ERROR overspeed / ERROR overspeed (EMF))	
	4.4.17	Encoder monitoring	
	4.4.18	Limit switch	
	4.4.19	Input phases failure detection	. 86
	4.4.20	Power off function	
	4.4.21	Minimum switch-off times	. 95
	4.4.22	Blockade handling	. 97
	4.4.23	Monitoring of the load	102
	4.4.24	Quickstop	107
	4.4.25	Minimum current monitoring in the safety module	107
	4.5	Braking transitor (GTR7)	110
	4.5.1	Braking transistor handling	110
	4.5.2	Braking transistor protective functions	
	4.5.3	Power calculation at the braking resistor	
	4.6	Fan control	
	4.6.1	Fan control F6	
	4.6.2	Fan control S6-A / S6-K	116
	4.7	Terminals short circuit protection	116
	4.7.1	Control type K	116
	4.7.2	Control type A	116
	4.7.3	Control type P	117
	4.8	Operating modes	118
	4.8.1	Operating mode 1: Profile position mode	110
	4.8.2	Operating mode 2: Velocity mode	125
	4.8.3	Operating mode 6: Homing mode	
	4.8.4	Cyclic referencing	
	4.8.5	Operating mode 8: Cyclic synchronous position mode	
	4.8.6	Operating mode 9: Cyclic synchronous velocity mode	
	4.8.7	Operating mode 10: Cyclic synchronous torque mode	
	4.8.8	Operating mode -2: jog mode in the cm customer modes group	
		Operating mode-independent functions	
	4.8.9 4.9	Synchronisation	
		•	
	4.9.1	Synchronous time	
	4.9.2	Optimizing the PLL	181
5	Disp	lay Parameters1	82
	5 .1	Overview of the ru parameters	
	5.2	Speed displays	
	5.2 5.3	Position displays	
	5.4	DC link displays	
	5. 4 5.5	Current displays	
	5.6	Torque displays	
	5.7	Power/Energy Displays	
	5. <i>7</i> 5.8	Status displays	
		• •	
	5.8.1	ru75 global drive state	
	5.8.2	ru76 drive state	
	5.8.3	de115 global drive state mask	
	5.8.4	ru30 SACB comm state	198

	5.9	Operating hours counter	199
	5.9.1	Real time clock	199
	5.9.2	Operating hours counter	199
	5.9.3	System counter	199
	5.10	Error displays and counter	200
	5.10.1	Error / warning displays	200
		Error counter	
		Error memory	
	5.11	Inverter data	
	5.11.1	Product code	202
		Device type, software version and date	
		Power unit identification	
		Serial numbers	
6		or Control	
•	6.1	Interface to the encoder	
	6.1.1	Terms and definitions used here	
	6.1.1	Encoder types	
	6.1.3	Position resolution of different encoder types	
	6.1.4	Scan time and speed fluctuations	
	6.1.5	Status parameters of the encoder interface and encoder	
	6.1.6	Parameters for the encoder adjustment	
	6.1.7	Operation of absolute linear encoders	
	6.1.8	Operation of non-absolute linear encoders (with and without reference marks))	
	6.1.9	Operation of EnDat multiturn encoders with battery buffering	
	6.1.10	Error and warning messages	
	6.1.11	Store data in the encoder	
	6.1.12	Encoder serial number	
	6.1.13	Assignment of the encoder channels	
	6.2	Motor parameterization	256
	6.2.1	General	256
	6.2.2	Asynchronous motor	
	6.2.3	Synchronous motor	
	6.2.4	Structure overview	
	6.2.5	Magnetizing current	
	6.2.6	Current control	
	6.2.7	Measurement / model currents	
	6.2.8	Currentlimitations	297
	6.2.9	Field weakening	298
	6.2.10	Flux controller (ASM)	309
	6.2.11	Adaption	
	6.2.12	Saturation characteristic (SM)	311
	6.2.13	Cogging torque compensation (SM)	
	6.2.14	Control mode (with encoder / encoderless)	317
	6.2.15	Model control (ASM and SM)	
	6.2.16	DC link voltage compensation	340
	6.2.17	Identification	
	6.2.18	Deadtime compensation	
	6.2.19	Switching frequency adjustment and derating	
	6.2.20	Interrupt structure of the software	
	6.2.21	Hardware/software current control	
	6.2.22		
		Speed search	
	6.2.24	Protection functions (ramp stop, current limitation in open-loop (v/f) operation)	361

	6.2.25	DC braking	. 364
	6.3	Speed controller	. 370
	6.3.1 6.3.2 6.3.3	Overview	. 371
	6.3.4	Variable proportional/integral factor (speed)	
	6.3.5	Speed controller adjustment via process data	. 375
	6.3.6	Determination of the mass moment of inertia	
	6.3.7 6.3.8	Speed controller PT1 output filter	
	6.3.9	Speed setpoint deceleration	
	6.4	Torque limits	
	6.4.1	Physical torque limits	
	6.4.2	application-dependent torque limits	
	6.5	Position control	390
	6.5.1	Position values	. 390
	6.5.2	Position control mode	
	6.5.3	Position controller	
	6.5.4	Following error	
	6.6	Structure position / speed control	
7	I/O fu	unctions	
	7.1	Digital Inputs	. 398
	7.1.1	Overview	
	7.1.2	Terminal state	
	7.1.3 7.1.4	Selection of the input source External setting of the input state	
	7.1. 5 7.1.5	Inversion of the digital input state	
	7.1.6	Filter for the digital inputs	
	7.1.7	Controlword inputs CW 1 / CW 2	
	7.1.8	Overview of the evaluation of digital inputs	
	7.1.9	Functions of the digital inputs	
	7.1.10	Overview of the input functions	
	7.2	Digital outputs	
	7.2.1	Control type K (COMPACT)	. 422
	7.2.2 7.2.3	Control type A (APPLICATION)	
	7.2.3 7.2.4	Functional overview	
	7.2.5	Display internal digital outputs	
	7.2.6	Source selection for the digital outputs	
	7.2.7	External setting of the output state	
	7.2.8	Output signal generation	
	7.2.9 7.2.10	Function blocks	
	7.2.10	Generation of the internal outputs	
	7.2.12	Inversion of the digital output state	
	7.2.13	Overcurrent of the digital outputs	
	7.3	Analog inputs	438
	7.3.1	Overview of the analog inputs	
	7.3.2	Interface selection	
	7.3.3 7.3.4	Input level of the analog inputs	
	7.3.4	Calculation of REF and AUA	. 440

	7.3.5 7.3.6	Mapping of REF and AUXPID process controller	
	7.3.0 7.4	Analog output	
	7.4 7.5	Status LED	
	7.5.1	Function of the status LEDs when switching on	449
	7.5.2	Fieldbus state (NET ST)	450
	7.5.3	Drive controller state (DEV ST)	
	7.5.4	FS Status (control type A and P)	
8	Time	٠٢	451
	8.1 8.2	Function of timer / counter blocksParameter	
	8.2.1	Overview	
	8.2.2	Configuration of the counting unit	
	8.2.3 8.2.4	Selection of the start bit	
	8.2.5	Selection of the reset bit	
	8.2.6	Selection of the bit for reversing the direction of rotation	
	8.2.7	Evaluation of the counter	
	8.2.8	Number of timers	
	8.2.9	Overview of the counter structure	
9	Obje	ct directory	457
	9.1	Glossary	457
	9.2	Display of parameters in COMBIVIS 6	
	9.2.1 see cha 9.2.2	For information on how to connect to the different object dictionaries on a KEB devapter 9.5	458
	9.3	KEB specific parameters and standard - conform parameters	
	9.3.1	EtherCAT conform parameters	
	9.3.2 9.3.3	CanOpen conform parameters Parameter conform to other fieldbus system standards	
	9.4	Volatile and non-volatile parameters in the object dictionary	
	9.4.1		
	9.4.1	Save mode and status of the non-volatile memory	
	9.4.3	Checksum	
	9.5	Return codes at parameter accesses	
10		munication	
10			
	10.1 10.2	Communication interfaces	
		5	
	10.2.1 10.2.2 10.2.3	Configuration of the diagnostic interface on the devices of control type P Configuration of the diagnostic interface on the devices of control type A and K Communication modes	476
	10.3	Fieldbus interface	479
	10.3.1	General information about the fieldbus interface	
	10.3.1	Use of KEB diagnostic tools via the fieldbus interface	
	10.4	COMBIVIS 6 process data assistant	
	10.4.1	Process data assistant for VARAN	
	10.4.2	Process data assistant for EtherCAT Process data assistant for CAN	481

	14.1	Inverter parameters (address / resolution /type)	
14	Anne	ex	
	13.4	Operating conditions	505
	13.3.3 13.3.4	Parameter "start recipe"	503 504
	13.3.2	Parameter "recipe input"	502
	13.3.1	Parameter "recipe options"	
	13.3	Parameter structure	
	13.2.1 13.2.2 13.2.3	Contents of the configuration lists	501
	13.1 13.2	Definition of terms Basic function	
		pe management (storage of parameter files in the drive er)	. 500
	12.4	Safety module diagnostic objects	
	12.2 12.3	FSoE Watchdog time type 5 (only F6-P)Safety module objects	
	12.1	FSoE Watchdog time type 3 (only F6-A / S6-A)	
12	Safe	ty modules	. 491
	11.3.3 11.3.4	PWMSignal output	
	11.3.1	PI controller	488
	11.2 11.3	Power limitationLiquid cooling management	485 486
• •	11.1	Compatibility objects	
11		cial Functions	
		FTP connection set-up	
	10.5	Connection to the file system	482

Figures

Figure 1: State machine	. 20
Figure 2: Function brake control	
Figure 3: Process of a fault reaction	. 46
Figure 4: Example co63	
Figure 5: Overload characteristic	. 54
Figure 6: Overload (OL2) limiting characteristic	. 56
Figure 7: Increase OL2 for 60A rated current and 40°C	. 58
Figure 8: Characteristic of the current limit in relation to the time	. 60
Figure 9: Overtemperature heatsink (OH)	. 62
Figure 10: Sensor calculation by Excel	. 66
Figure 11: Tripping motor protection switch	
Figure 12: Dependence of the motor protection function	. 69
Figure 13: Dependence of the tripping time	. 69
Figure 14: Determination of the motor protection function data from the characteristics of the	
motor manufacturer	. 70
Figure 15: Fieldbus watchdog	. 71
Figure 16: Effective motor load	. 73
Figure 17: Limit switch	
Figure 18: Motor operation	
Figure 19: Regenerative operation	
Figure 20: Motor operation without power-off function	
Figure 21: Regenerative operation in case of mains power failure	
Figure 22: Control to constant DC link voltage	
Figure 23: Circuit diagram of the DC control (ppz=number of pole pairs)	
Figure 24: Minimum current course	
Figure 25: Profile positioning mode (1)	
Figure 26: Profile positioning mode (2)	
Figure 27: Single positioning	
Figure 28: Multi positioning	
Figure 29: Restart of a positioning	
Figure 30: Ramps in profile position mode	
Figure 31: Motor encoder with initiator at round table	
Figure 32: Motor encoder with encoder and initiator at rotary table	
Figure 33: Operation with motor model and encoder with initiator at rotary table	
Figure 34: Velocity mode - overview	
Figure 35: Velocity mode	
Figure 36: Target speed limitation	
Figure 37: Ramp generator	
Figure 38: s-curve type = 0: continuous s-curve	
Figure 39: s-curve type = 4: abort in s-curve	
Figure 40: pass zero type = 0: not zero	
Figure 41: pass zero type = 8: zero	
Figure 42: Calculation example	
Figure 43: Homing – Method 1	
Figure 44: Homing – Method 2	
Figure 45: Homing – Method 3 and 4	
Figure 46: Homing – Method 5 and 6	
Figure 47: Homing – Method 7 to 14 (23 to 26)	
Figure 48: Homing – Method 33 and 34	
Figure 49: Cyclic synchronous position mode - overview	
Figure 50: Cyclic synchronous position mode	
Figure 51: Example interpolation	
Figure 52: Position precontrol	
Figure 53: Cyclic synchronous velocity mode - principle	
Figure 54: Cyclic synchronous velocity mode - principle	
. igais on opinion of the following model in the control of the co	. 52

Figure 55: Cyclic synchronous forque mode - Overview	
Figure 56: Transfer torque setpoint telegram -> current controller	169
Figure 57: Torque control and overspeed interception	
Figure 58: Operating mode jog mode	171
Figure 59: Drive profiles in jog mode	
Figure 60: Torque limit in all quadrants	
Figure 61: Auxiliary representation for the calculation of ru83[]	
Figure 62: Order designation	
Figure 63: Structure data word BiSS	
Figure 64: Extract Heidenhain	
Figure 65: Equivalent circuit diagram motor	
Figure 66: Equivalent circuit diagram synchronous motor	
Figure 67: Structure overview motor model	
Figure 68: Generation of the magnetizing current	
Figure 69: Generation of the d-component	
Figure 70: Field weakening range asynchronous motor	
Figure 71: Maximum voltage controller	
Figure 72: Limit value at synchronous motors	
Figure 73: Maximum torque depending on the DC link voltage for the synchronous motor	
Figure 74: Adjustment of the torque limiting characteristic	
Figure 75: Safety distance to the limit characteristic	
Figure 76: Flux controller (ASM)	
Figure 77: Torque constant depending on the active current	
Figure 78: Torque constant depending on the torque	
Figure 79: Cogging torque compensation	
Figure 80: v/f – Influence of the additional point of support	322
Figure 81: v/f – Influence of the DC link voltage compensation	323
Figure 82: v/f – Influence of the maximum degree of modulation	323
Figure 83: v/f - Influence of dr48 v/f characteristic mode	324
Figure 84: Model deactivation depending on the motor type	330
Figure 85: Model deactivation depending on the motor type	
Figure 86: Model deactivation depending on the motor type	
Figure 87: Torque limit depending on the setpoint value	
Figure 88: Stabilisation current depending on speed	
Figure 89: Model stabilisation term depending on motor speed	338
Figure 90: Time allocation	
Figure 91: Connection example sine-wave filter	
Figure 92: Motor de-excitation time ASCL	
Figure 93: Speed controller overview	
Figure 94: Pi-speed controller	
Figure 95: Variable proportional factor	
Figure 96: Variable proportional factor (kp) / integral factor (ki) with cs08=10%, cs09=20%	374
Figure 97: High-run test with COMBIVIS	376
Figure 98: PT1 output filter	
Figure 99: Torque precontrol mode 1	
Figure 100: Torque precontrol mode 2	
Figure 101: Torque precontrol smoothing	
·	
Figure 103: Overshoots in the speed setpoint	
Figure 104: Speed setpoint deceleration	
Figure 105: Optimal precontrol behaviour.	
Figure 106: Torque limit in the lower speed range	
Figure 107: Position control overview	
Figure 108: KP reduction in the position controller	
Figure 109: Structure position / speed control	
Figure 110: Digital inputs block diagram	
Figure 111: Filter of the digital inputs	
Figure 112: Filter of the digital inputs 2	402

Figure 113: di28 cw input 1	404
Figure 114: ds61: cw input 1	404
Figure 115: Structure: Evaltuation of the digital input status	
Figure 116: digital input controlword	
Figure 117: digital input controlword	
Figure 118: Example 1 for the index filter	
Figure 119: Example 2 for the index filter	419
Figure 120: Overview index creation with all filters	
Figure 121: Digital outputs block diagram	
Figure 122: Comparator level	
Figure 123: Filter for the comparison operation	
Figure 124: Analog inputs block diagram	
Figure 125: PID controller	
Figure 126: Timer / counter structure	
Figure 127: Display object data in COMBIVIS	
Figure 128: Interpolation	
Figure 129: Loading of default values in download lists	
Figure 130: Process data assistant for VARAN	
Figure 131: Process data assistant for EtherCAT	
Figure 132: Process data assistant for CAN	
Figure 133: Set the baud rate	
Figure 134: Disconnect the connection to the inverter	
Figure 135: Connect drive controller	
Figure 136: Copy recipe	
Figure 137: Overview controller	
Figure 138: Overview controller motor cooling	
Figure 139: Structure PWM for cooling control	488

Tables

Table 3-1: Used terms and abbreviations	19
Table 4-1: Overvoltage level	
Table 4-2: Permanent damage due to overvoltage	
Table 4-3: Switching threshold for braking transistor	
· · · · · · · · · · · · · · · · · · ·	215

2 Basic Safety Instructions

The products are designed and constructed in accordance with state-of-the-art technology and the recognized safety rules and regulations. However, the use of such devices may cause functional hazards for life and limb of the user or third parties, or damages to the system and other material property.

The following safety instructions have been created by the manufacturer for the area of electric drive technology. They can be supplemented by local, country- or application-specific safety instructions. This list is not exhaustive.

Violation of the safety instructions by the customer, user or other third parties will result in the loss of all claims against the manufacturer caused by this.

NOTICE

Hazards and risks through ignorance!

- Read all parts of the instructions for use!
- Observe the safety and warning instructions!
- If anything is unclear, please contact KEB!

2.1 Target group

This part of the instructions for use is intended exclusively for persons in design and development who are entrusted with the design and programming of applications.

2.2 Validity of this manual

The instructions for use for the COMBIVERT is divided into the following parts:

- Installation housing
 - Describes the installation
 - Technical data of the power units
 - Operation and maintenance

0

- Installation control
 - o Describes the functions of the controls
 - Technical data of the controls
 - o Contains only supplementary safety instructions
 - Information about interfaces
- Programming manual control
 - o Describes the parameterization of the device
 - Describes the programming of functions
 - o Includes the drive controller software and power unit parameters
 - o Contains only supplementary safety instructions
- Safety manuals
 - Is only valid in connection with the instruction manual
 - Contains safety-related supplements and requirements for operation in safety-related applications
 - Contains references to standards that must also be observed
 - The safety manual only applies to inverters with certification

2.3 Electrical connection

▲ DANGER

Electrical voltage at terminals and in the device! Danger to life due to electric shock!

- For any work on the device switch off the supply voltage and secure it against switching on.
- Wait until the drive has stopped in order that no regenerative energy can be generated.
- Await capacitor discharge time (5 minutes) if necessary, measure DC voltage at the terminals.
- Never bridge upstream protective devices (also not for test purposes)

For a trouble-free and safe operation, please pay attention to the following instructions:

- The electrical installation shall be carried out in accordance with the relevant requirements.
- Cable cross-sections and fuses must be dimensioned according to the design of the machine manufacturer. Specified minimum / maximum values may not be fallen below /exceeded.
- With existing or newly wired circuits the person installing the units or machines must ensure the EN requirements are met.
- For drive controllers that are not isolated from the supply circuit (in accordance with EN 61800-5-1) all control lines must be included in other protective measures (e.g. double insulation or shielded, earthed and insulated).
- When using components without isolated inputs/outputs, it is necessary that
 equipotential bonding exists between the components to be connected (e.g. by
 the equipotential line). Disregard can cause destruction of the components by
 equalizing currents.

2.4 Start-up and operation

The drive controller must not be started until it is determined that the installation complies with the machine directive; Account is to be taken of *EN 60204-1*.

Software protection and programming! Danger due to unintentional behaviour of the drive!

- Check especially during initial start-up or replacement of the drive controller if the parameterization is compatible to the application.
- Securing a unit solely with software-supported functions is not sufficient. It is imperative to install external protective measures (e.g. limit switch) that are independent of the drive controller.
- Secure motors against automatic restart.

3 Product Description

3.1 Product features

This manual describes the parameterization of the

• Device series: COMBIVERT F6 / S6

• Hardware: Control board C(ompact)

Control board A(pplication)

Control board P(ro)

Software: Version 2.9

3.2 Functional overview

- Operation of asynchronous and synchronous machines
- open-loop and closed-loop operation
- Regeneration possible with encoder or encoderless
- Operation via state machine according to CiA 402
- Brake control
- Operating modes
 - o Profile position mode
 - Velocity mode
 - o Homing mode
 - o Cyclic referencing
 - o Cyclic synchronous position mode
 - o Cyclic synchronous velocity mode
- Programmable behaviour to errors and warnings
- Programmable display
- Automatic motor detection
- Programmable inputs and outputs
- Different fieldbus interfaces

3.3 Used terms and abbreviations

Term	Description
0V	earth-potential-free common point
1ph	1-phase mains
3ph	3-phase mains
AC	AC current or voltage
AFE	Active Front End
AFE filter	Filter for the AFE unit
ASCL	Asynchronous sensorless closed loop. Operation with asynchronous
7.002	motor model without encoder
Auto motor ident.	Automatic motor identification; Measurement of resistance and in-
/ tate meter lacint.	ductance
AWG	American coding for cable cross-sections
B2B	Business-to-business
BiSS	Open source real-time interface for sensors and actuators (DIN
5.00	5008)
CAN	Fieldbus system
CDM	Complete drive module incl. auxiliary equipment (control cabinet)
COMBIVERT	KEB drive controller
COMBIVIS	KEB start-up and parameterization software
DC	DC current or voltage
DI	Demineralized water, also known as deionized (DI) water
DIN	German Institute for Standardization
DS 402	CiA DS 402 - CAN unit profile for drives
EMC	Electromagnetic compatibility
EN	European standard
Endat	Bidirectional encoder interface of the company Heidenhain
EtherCAT®	Real-time Ethernet bus system; EtherCAT® is a registered trade-
LillerCAT	mark and patented technology, licensed by Beckhoff Automation
	GmbH, Germany. It is marked by the following logo:
	Sinish, Somany, the marked by the following logo.
	Ether CAT.
	Luici CA 10
Ethernet	Real-time bus system - defines protocols, connectors, cable types
FE	Functional earth
FSoE	Functional safety via Ethernet
FI	Drive controller
Encoder emulation	software-generated encoder output
GND	Reference potential, ground
GTR7	Braking transistor
HF filter	High frequency filter to the mains
Hiperface	Bidirectional encoder interface of the company Sick-Stegmann
HMI	Visual user interface (Touchscreen)
HSP5	Fast, serial protocol
HTL	Incremental signal with an output voltage (up to 30V) -> TTL
I ² t-monitoring	Software function for thermal monitoring of the motor winding
IEC	International standard
IP xx	
Node address	Degree of protection (xx for level) (Also Node ID) Describes in this degree of deptification number.
Noue address	(Also Node ID) Describes in this document the identification number
	with which a KEB device is addressed via the KEB own protocol DIN66019.
KTY	Silicon temperature sensor (polarised)
	Silicon temperature sensor (polanseu)
	Air/ water heat exchanger
LW heat exchanger MCM	Air/ water heat exchanger American measuring unit for large cable cross-sections

Term	Description
Modulation	means in drive technology that the power semiconductors are con-
	trolled
MTTF	mean service life to failure
NN	Sea level
Emergency switching off	Switching off the voltage supply in emergency case
Emergency stop	Shutdown of a drive in emergency case (not de-energized)
Object directory	Ordered collection of parameters (objects) of the device
OC	Overcurrent
OH	Overheating
OL	Overload
OSSD	Output switching element; Output signal that is checked at regular
	intervals to ensure that it can be switched off. (safety technology)
PA	Potential equalization
PDS	Power drive system including motor and sensor (encoder)
PE	Protective earth
PELV	Safe protective low voltage, earthed
PFD	Term used in the safety technology (EN 61508-17) for the size of
	error probability
PFH	Term used in the safety technology (EN 61508-17) for the size of
	error probability per hour
SCL	Synchronous sensorless closed loop. Operation with synchronous
	motor model without encoder

Table 3-1: Used terms and abbreviations

4 Motion Control

4.1 State machine

The state machine provides information about the actual operating state of the drive and describes the change between the operating states.

The state machine is controlled via the co00 (CiA 0x6040) controlword and internal events (e.g. occurrence of an error). The actual state is displayed via st00 (CiA 0x6041) statusword. The actual state can be determined additionally via st12 state machine display.

The following block diagram displays the state machine. The states are also displayed in english in the german documentation with the original english designations, since these became generally accepted also in German-speaking areas.

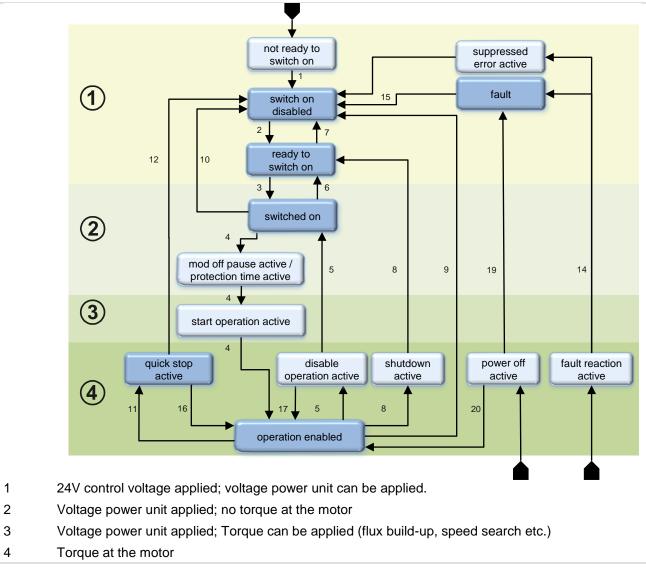


Figure 1: State machine

Not ready to switch on:

This state is pass through after switching on the control voltage (initialisation of the control hard- and software). After completion of the initialisation the unit changes automatically into state **Switch on disabled**.

Switch on disabled:

StateSwitch on disabled is reached when:

- the initialisation is completed (1).
- an error reset was successful (15).
- The bit Enable voltage at co00 (CiA 0x6040)controlword is set to 0 (9,10).
- the release at the safety module (STO) is not preset (9,10).
- the charging of the DC link is not completed.

Ready to switch on:

State Ready to switch on is reached when:

- In state Switch on disabled bit Enable voltage is set to 1(2).
- In state **Switched on** bit Switch on is set to 0 (6).
- In state Operation enabled bit Switch on is set to 0 (8).

The behaviour of change 8 can be influenced by parameters. See also: Affect the behaviour of the state machine.

Switched on:

State Switched on is reached when:

- In state Ready to switch on bit Switch on is set to 1 (3).
- In state Operation enabled bit Enable operation is set to 0 (5).

State **Switched on** can only be reached with voltage supply at the power unit. The behaviour of change 5 can be influenced by parameters. See also: Affect the behaviour of the state machine.

Mod off pause active / Protection time active / Endless protection active:

This state is reached when:

• In state **Switched on** bit **Enable operation** is set to 1 (4).

A minimum switch-off time (Mod off pause) must be kept after switching off the modulation until it can be switched on again. A protection time must be observed after some errors (OC, OL2, OP). If **Enable operation** is set to 1 and the corresponding time has not yet elapsed, the state **Mod off pause active / Protection time active / Endless protection active** is set. (For a more detailed description of the individual states, see chapter

If the minimum off time of the unit is up, the drive changes into state **Start operation active**.

Suppressed error active:

This state is reached when an error has occurred that should not be indicated in ru01 or st00 (CiA 0x6041) statusword.

Start operation active:

This state is reached when:

• In state Switched on bit **Enable operation** is set to 1 (4) and the minimum turn-off time of the unit is up.

In state **Start operation active** the operations which are required for the start of the drive control are done by the drive. Which operations are executed is dependent on the used motor type, the control mode and the application-dependent parameterization of the unit.

Possible functions are:

 Structure of the magnetic flux (asynchronous machine), determination of the rotor position (encoderless controlmethod), open the brake, etc.

After completion of these functions the drive changes into state **Operation Enabled**.

Operation enabled:

State Operation enabled is reached when:

• In state **Switched on** bit **Enable operation** is set to 1 (4) and both the minimum turn-off time is up and also the start operations were executed.

Quick stop active:

State Quick stop active is reached when:

- in the control word bit 2 (no Quickstop) is 0.
- When Quickstop in co32 is deactivated, bit 2 in the control word is ignored.

Fault reaction active:

State Fault reaction active is reached when:

an error occurs.

The response to an error can be affected by parameters. See also: Affect the behaviour of the state machine.

Fault:

State Fault is reached when:

• the error response is completed.

shutdown operation active

State **shutdown operation active** is reached when:

Bit switch on is reset in state Operation enabled.

disable operation active

State disable operation active is reached when:

• Bit Enable Operation is reset in state Operation enabled.

Power Off:

State **Power Off** is reached when:

A mains power failure is detected and the Power Off function has been activated in the cu parameters (see chapter 4.4.20).

The states "shutdown operation active", "disable operation active" and "fault reaction active" are only carried out with the appropriate setting of the state machine. The behavior in these states is defined in co32.

4.1.1 Changes of the state machine

All possible changes between the different states of the state machine can be found in the picture in chapter4.1 State machine.

Setting of bit 3 *Enable Operation* in the controlword can deactivate the **Disable Operation** function.

Setting of bit 2 no Qickstop can deactivate Quickstop Reaction Active.

Disable Operation Active can be interrupted by Shutdown Operation Active.

Quickstop Reaction Activecan not be interrupted by Shut Down Active, independent of the selected response to the Switch On Bit.

Fault Reaction Active has the highest priority and can interrupt Shutdown Operation Active, Disable Operation Active and Quickstop Reaction Active.

Exception:

• Fault Reaction Active is interrupted by Shut Down, if shutdown mode is set as direct shutdown (shutdown option code = "0: disable drive function" or co32 state machine properties Mode shutdown mode = "0: direct").

Removal of bit 1 *enable voltage* always leads to an immediate shutdown of the modulation.

4.1.2 Control word

State changes of the **state machine** are requested via the object co00 (CiA 0x6040) controlword. Access to the control word is possible via two addresses:

Index	Id-Text	Name	Function
0x2500	co00	(C:A 0xC040) control yourd	KEB spec. object
0x6040		(CiA 0x6040) controlword	CiA402 object

This "communication control word" can be changed by other sources (e.g. digital inputs, protective functions):

Index	Id-Text	Name	Function
0x251E	co30	controlword mask	Mask to activate the internal controlword
0x251F	co31	controlword internal	Internal controlword
0x210E	st14	active controlword	displays the controlword, which results from the combination of co31 controlword internal and the stop reactions

The controlword contains the following bits:

co00	(CiA 0x6040) controlword	0x2500
Bit	Name	Note
0	Switch on	Command to the state change (=> below)
1	Enable voltage	Command to the state change (=> below)
2	no quick stop	0 activates quick stop (function must be activated in co32)
3	Enable operation	Command to the state change (=> below)
46	Operation mode specific	Meaning is depending on the operating mode
7	Fault reset	Command to the state change (=> below)
8	Halt	Halt is supported in vI, hm and pp mode
9	Operation mode specific	Meaning is depending on the operating mode
10	reserved	
1114	Operation mode specific	Manufacturer specific, currently supported function:
		combined handling of controlword bits and digital input functions
15	Open brake	 Manufacturer specific, currently supported function: 1 => Opening of the motor brake (depending on co21 brake control mode)

Heing hits 0-3 and 7	commands for	changing the state:
USITIO DILS US ATIO I	COMMINIATION TO	Chanding the State.

	Bits in the control word						
Command	Fault re- set	Enable operation	Quick stop	Enable volt- age	Switch on	Change	
Shutdown	0	Х	1	1	0	2,6,8	
Switch on	0	0	1	1	1	3	
Disable voltage	0	Х	Х	0	Х	7,9,10,12	
Quick stop	0	Х	0	1	Х	7,10,11	
Disable operation	0	0	1	1	1	5	
Enable operation	0	1	1	1	1	4,16	
Fault reset	1	Х	Х	х	Х	15	

The effective controlword st14 active controlword is formed in several steps:

0x2500 co00 resp. 0x6040 is the bus control word released for process data.

This control word can be influenced by digital inputs. How the control word formed from the digital inputs can be seen in parameter di29 digital input controlword.

For diagnostic purposes, or if single bits shall be preset via digital inputs, the access of co00 or Adr.0x6040 to single bits of the internal controlword can be switched off in co30. The default value of 0xFFFF in co30 means that all bits are preset via the bus-controlword. Access of the bus-controlword to the internal status word is completely switched off with 0 in co30.

Parameters co28 combined controlword mask and co29 source connection definition can be used to implement a link (AND / OR / switchable) between digital input functions and the specifications in co00. The result of this link is visible in st15 combined control word.

A detailed description of the presetting via digital inputs or the combined setting via digital inputs and controlword bits is given in the chapter 7.1.9.1 Controlword functions via the digital inputs.

co31 controlword internal can be written even via bus. This parameter can not be set to process data.

However, the default case is to specify the control word via 0x2500 co00 or 0x6040.

The effective controlword can be changed by the protection functions. (see chapter 4.3.1.2.2 Error reaction)

st14 active controlword displays the controlword that results after evaluation of the stop reactions. This control word is decisive for the behaviour of the state machine.

4.1.3 Statusword

The actual state of the **state machine** is displayed via the object status word. Access to the status word is possible via two addresses:

Index	Id-Text	Name	Function
0x2100	st00	(CiA OxCOAA) statusouserd	KEB spec. object
0x6041		(CiA 0x6041) statusword	CiA402 object

The status word contains the following bits:

st00	(CiA 0x6041) statusword	0x2100
Bit	Name	Note
0	ready to switch on	Display of the actual state (=> below)
1	switched on	Display of the actual state (=> below)
2	operation enabled	Display of the actual state (=> below)
3	fault	1 = fault
4	voltage enabled	1 = Operating voltage in the power circuit OK
5	no quick stop	1 = quick stop not active / 0 = quick stop active
6	Switch on disabled	Display of the actual state (=> below)
7	warning	1 = There is a warning (if a warning should also be displayed in the statusword is determined with parameter pn28 warning mask)
8	synchron	Manufacturer-specific, 1 = Drive control synchronous to field bus
9	remote	is not supported
10	target reached	1 = Target position reached in pp and hm mode
11	internal limit active	1 = Internal limitations (the speed controller output value reaches the torque or current limit)
12	op. mode spec. 12	Setpoint acknowledge in pp-mode Drive follows command in csp, csv and cst mode
13	op. mode spec. 13	Following error at active position controller
14	manufacturer spec. 14	Manufacturer specific => Special function (Power Off, Suppressed Error) active
15	manufacturer spec. 15	Braking state (=> Chapter 4.2.7 Status of the brake control)

Determination of the actual state of the state machine from the status word:

Statusword	State of the state machine
xxxx xxxx x0xx 0000	Not ready to switch on
xxxx xxxx x1xx 0000	Switch on disabled
xxxx xxxx x01x 0001	Ready to switch on
xxxx xxxx x01x 0011	Switched on
xxxx xxxx x01x 0111	Operation enabled
xxxx xxxx x00x 0111	Quick stop active
xxxx xxxx x0xx 1111	Fault reaction active
xxxx xxxx x0xx 1000	Fault

4.1.4 Display of the actual state

The current state of the state machine can be read out directly.

Index	Id-Text	Name	Note
0x210C	st12	state machine display	actual state of the state machine (KEB spec. object)
0x210D	st13	state and error display	Error and state machine display

The meaning of the values of st12:

st12	state machine display	0x210C
Value	State	Note
0	Initialization	This state is pass through after switching on the control voltage (ini-
1	Not ready to switch on	tialisation of the control hardware and software).
2	Switch on disable	The modulation cannot be enabled yet. In addition to the controlword bits, causes can be missing STO signals or missing mains voltage.
3	Ready to switch on	The bit "enable voltage" is not yet set, the preconditions STO signals and mains voltage are given
4	Switched on	The "enable operation" bit is missing to enable modulation
5	Operation enabled	Modulation is enabled, the state machine has started, no exception (e.g. stop mode) is active for the handling of the state machine.
6	Quick stop active	The quick stop reaction is carried out
7	Fault reaction active	The error / fault reaction is carried out. Modulation is still active.
8	Fault	Fault (modulation switched off)
9	Shutdown active	"Shutdown" or "Disable operation" is executed according to the
10	Disable operation active	mode selected in co32
11	Start operation active	Start function active (e.g. flux build-up, brake opening)

st12	state machine display 0x2100		
Value	State	Note	
12	Mod off pause active	Minimum switch-off time of the modulation not yet expired	
13	Power Off	Power Off function active	
14	protection time active	A protection time (minimum switch-off time after error) is active For more detailed information see chapter (4.4.21 Minimum switch	
15	protection time end		
16	endless protection time	off times.	
17	suppressed error	An applied error leads to modulation shutdown, but it is not displayed as an error in ru01 and the state parameters.	

The detailed description of the single states of the state machine and the changes can be found in chapter 4.1 State machine.

st13	state and error display		
Bit	Name Note		
07	error display	Value of ru01 (see 4.3.1 Errors)	
815	state display	Value of st12 * 256	

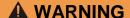
This parameter is used to indicate the reason for the triggering of a stop function (Fault-Reaction / ShutDown / Quickstop / DisableOperation), even if the internal error state is no longer present during the ramp.

The display of the error is not reset via a reset, but only by the request of a new state machine change via the internal controlword.

4.1.5 Affect the behaviour of the state machine

The behaviour of the state machine can be affected via parameter co32 state machine properties.

Index	Id-Text	Name	Function
0x2520	co32	state machine properties	KEB spec. object


The parameter contains the following bits:

co32	state machine prope	rties		0x2520
Bit	Function Value Plaintext			
0	Shutdown mode	0	direct change to ready to switch on	
U	Shuldown mode	1	Deceleration at ramp (selection bit 4	5)
1	Disable operation	0	direct change to switched on	
ı	mode	2	Deceleration at ramp (selection bit 6	7)
2	Fault reaction	0	If an error occurs direct change in faul	t mode
	mode	4	Fault reaction depending on fault and adjustment	
3	Enable operation	0	Change 4 if bit Enable operation is 1	
3	mode	8	Change 4 at positive edge of Enable of	peration
		0	Fault reaction ramp (pn45 pn62)	
45	Shutdown ramp	16	Standard ramp (co48 co60)	
45	mode	32	Positioning module ramp (ps48ps59)
		48	Reserved	
		0	Fault reaction ramp (pn45 pn62)	
67	Disable operation ramp mode	64	Standard ramp (co48 co60)	
01		128	Positioning module ramp (ps48ps59)
		192	Reserved	
8	Enable vI ramp op-	0	Ramp generator options für velocity m Description co00)	ode disabled (=>
	tions	256	Ramp generator options für velocity m	ode enabled
9	Enable Quickstop	0	Quickstop disabled	
9	Eriable Quickstop	512	Quickstop enabled	
		0	Different setting for each ramp Object	
1012	co ramp	1024	Copy to ps ramp	
1012	co ramp	2048	48 Copy to pn ramp	
		4096	Copy to cm ramp	
13	enable edge after mod off pause	0	A positive edge, which is given during switch-off time or protection time in the bit, leads to the "Operation enabled" so has elapsed.	e "enable operation"
		8192	An edge given during the minimum sw tection time in the "enable operation" but	

The description of the influence of the "ramp generator options" (Enable vI ramp options) can be found in chapter 4.8.2.3 Controlword in the velocity mode

If the fault response ramp is used for Shutdown, Disable operation or Quickstop, also the variable change of the torque limit can be used via co61.

4.2 Brake control

Customer evaluation of the brake control!

The brake control is influenced by other functions (e.g. position control) depending on the process.

- Always evaluate brake control in the customer application.
- List and test possible braking scenarios.
- Check scenarios again if changes are made in the application.

4.2.1 Specification brake control F6-A / S6-A or F6-P S6-P

For more information, please refer to the instruction manual of the safety module and the installation instructions of the control board.

4.2.2 Specification brake control F6-K / S6-K

The max. permissible current for the brake is 2A.

If a fault current is exceeded, error 68 "ERROR" overcurrent brake is triggered. The response threshold of the error is between 2.5A and 4A.

Thus the brake control is short-circuit protected.

4.2.3 Functionality

The brake control basically consists of two function blocks.

The specified condition of the control (Ref) is generated from different input sources in the first function block. Bit 15 of the control word and the CIA402 status machine are available as input sources.

The deceleration times are used in the second function block and out of it the control signal of the brake (Sig) and the **assumed** brake condition (Val) are generated.

These values can be displayed via the st04 brake ctrl status.

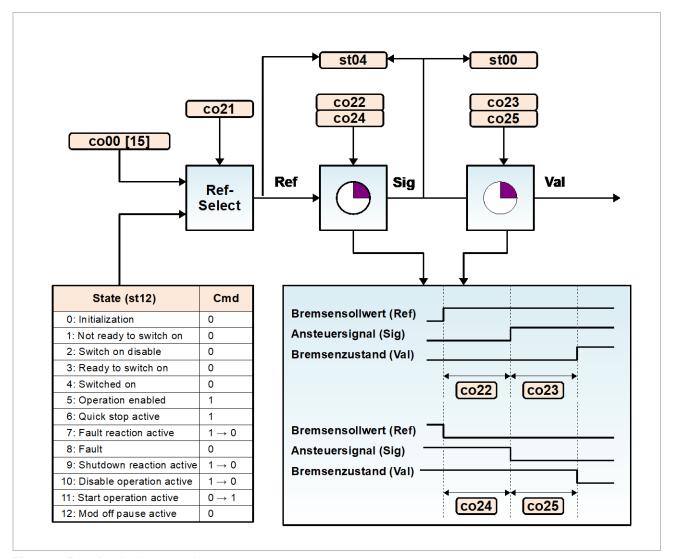


Figure 2: Function brake control

4.2.4 Characteristics of the brake control

The generation of the setpoint of the brake control is controlled via the object co21 brake ctrl mode.

Index	Id-Text	Name	Function
0x2515	co21	brake ctrl mode	Characteristics of the brake control

co21	brake ctrl mode				0x2515
Bit	Function	Value	Plaintext	Note	
		0	controlword	Bit15 of the control word contr	ols the brake
		1	application	CIA402 state machine controls	s the brake
02	mode	2	controlword open dominant	Open command at control work overmodulated application	ď
		3	controlword close dominant	Close command at control wo overmodulated application	rd
		47		Reserved	
		0	no reaction	No reaction with engaged bral	∢e
3	3 closed brake		force switched on	An engaged brake forces the son	state to switched
4	4 channel select		channel off	Control type F6-A / S6-A wit type 1: The function of Bit4 is written of safety module. => See instruction	directly to the
4	Charmer Select	16	channel on	safety module. Control type F6-K / S6-K, F6 with safety module type 3: Without function	-P or F6-A / S6-A
5	state change	0	sc delay off	State maschine does not wait of the brake control	for state change
5	delay	32	sc delay on	State maschine waits for state brake control	change of the

At mode = 0 bit 15 of the co00 control word is used as setpoint for the brake control. The state of the state machine (Cmd) is not evaluated.

At mode = 1 value (Cmd) of the state machine is used as setpoint of the brake control. The control word is not evaluated.

At mode = 2 value (Cmd) of the state machine is used, 1 in bit 15 of the control word sets the setpoint (Ref) always to 1.

At mode = 3 value (Cmd) of the state machine is used, 0 in bit 15 of the control word sets the setpoint (Ref) always to 0.

co21	brake ctrl mode				0x2515
Bit	Function	Value	Plaintext	Note	
		0	off	No load transfer	
6,7	torque transfer mode	64	start and stop speed	During the opening times of th co23) the co26[1] start speed up a torque, during the closing co25) the co26[2] stop speed antee a torque.	is active to build times (co24,
		128	position control	The position controller is autor when the brake is opened and position is automatically taken tual position and kept constant	closed, the set over from the ac-
		0	off	No pre torque	
8,9	pre torque	256	pre torque setting	During the first 25% of co22 by lay, the precontrol torque is incoalue in co26[3] and then remains	creased up to the
0,9		512	auto adjust	In addition to the pre torque se actual torque is determined an pre-torque value in co23[3] be closed.	d stored as new

- In most cases it makes sense to control the brake from the state machine. Therefore the options: application + force switch on + sc delay on + torque transfer mode should be activated in co21 brake control mode.
- For start-up or if the complete brake control shall be adapted by an external control, value 0 is recommended for co21 brake control mode. In this case, 0 should be set for the times co22 ... co25.
- > For open-loop applications torque transfer with start and stop speed is recommended, for closed-loop drives torque transfer with postion control can be used.
- > If you know the exact load torque, you can achieve best results with pre torque, without movement when opening the brake.

co26	brake control		0x251A[]
Index	Name	Function	
1	start speed Setting of the start speed for torque setting when opening the brake ticularly suitable for drives without feedback.		
2	stop speed Setting of the stop speed for the torque setting when closing the brake the sign determines the torque direction.		
3	pre torque setting	Setting the precontrol torque. 100% correspond to torque with the resolution of co84. An analog value ured with an31 or an34 in order to configure the precs21 pretorque mode must be set to 2: reference to	can also be config- econtrol torque. The
4	speed ctrl (KI) adaption During opening the brake (co23) the I-component of the speed controlle is multiplied by this value.		
5	fadeout reducing time	After the co25 closing time has elapsed, the currenduring this time.	t limit is reduced to 0
6	fadeout zero time	Subsequently, a time with current limit 0 can be ins	erted.

4.2.4.1 Special features brake control for control type F6-A / S6-A

The detailed description of the brake control is contained in the instruction manual for the safety module.

Control type F6-A / S6-A with safety module type 1:

The brake control is directly activated or deactivated on the safety module via co21 brake ctrl mode. If no brake is used, the channel should be deactivated.

The monitoring of the brake current can also be switched off with co82 ext. modules ctrl word. This prevents false tripping due to disturbances which can be coupled into by the open brake cable. These settings are also found in sb28 safety modul control word before they are transferred to the safety module. A power-on is required after changing these settings.

Control type F6-A / S6-A with safety module type 3:

The complete configuration of the safe brake control occurs via the special editor for the KEB safety module.

4.2.5 Influence of the brake control on the state machine

The following state changes are decelerated, if delay on is activated in co21 bit 5 sc:

State change	Description
start operation active ↓	The modulation is enabled in state "start operation active" and speed = 0 is preset. Subsequently, the setpoint of the brake control (CMD) is set to 1.
operation enabled	After the assumed state of the brake (Val) has reached value 1 (open brake), the state machine changes to "Operation enabled".
shutdown operation active	Speed shutdown to 0 in state "shutdown operation active" depending on the selected ramp (standard ramp) or pn47 fault reaction ref velocity (fault reaction ramp). Subsequently, the setpoint of the brake control (CMD) is set to 0. After the assumed condition of the brake (Val) has reached value 0 (brake closed), the state machine changes to "ready to switch on".
disable operation active	Speed shutdown to 0 in state "disable operation active" depending on the selected ramp (standard ramp) or pn47 fault reaction ref velocity (fault reaction ramp). Subsequently, the setpoint of the brake control (CMD) is set to 0. After the assumed condition of the brake (Val) has reached value 0 (brake closed), the state machine changes to "switched on".
fault reaction active ↓ fault	The speed is set to pn47 fault reaction ref velocity in the "fault reaction active" state. Subsequently, the setpoint of the brake control (CMD) is set to 0. After the assumed condition of the brake (Val) has reached value 0 (brake closed), the state machine changes to "fault".

The states "shutdown operation active", "disable operation active" and "fault reaction active" are only carried out with the appropriate setting of the state machine.

Make sure that the appropriate settings have been made in object co32 state machine properties.

4.2.6 Times of the brake control

The times of the brake control can be influenced by the following objects:

Index	Id-Text	Name	Function
0x2516	co22	brake ctrl open delay	Waiting time of Ref↑ to Sig↑
0x2517	co23	brake ctrl open time	Waiting time of Sig↑ to Val↑
0x2518	co24	brake ctrl closing delay	Waiting time of Ref↓ to Sig↓
0x2519	co25	brake ctrl closing time	Waiting time of Sig↓ to Val↓

4.2.7 Status of the brake control

The status of the brake control can be displayed via the following object:

Index	Id-Text	Name	Function
0x2104	st04	brake ctrl status	Status of the brake control

st04 contains the following bits:

st04	brake ctrl status	3		0x2104
Bit	Function	Value	Plaintext	Note
0	hanka atal yal	0	val off	Assumed condition of brake = closed
0	brake ctrl val	1	val on	Assumed condition of brake = open
1	brake ctrl sig-	0	sig off	Brake control signal = 0 (closed)
'	nal	2	sig on	Brake control signal = 1 (open)
2	brake ctrl ref	0	ref off	Setpoint of the brake control = 0 (closed)
2	2 brake currer	4	ref on	Setpoint of the brake control = 1 (open)
3	broke output	0	out off	State of the brake output
3	brake output	8	out on	
	State	0	closed	Brake closed
		16	open delay	Brake open delay
		32	opening	brake opening
47		48	open	Brake is open
		64	close delay	Brake close delay
		80	closing	Brake closes
		96	fadeout	Current decay at closed brake
815	Reserved	0		

Additionally, there is an information about the brake control via the status word: Bit 15 of the status word or Bit 3 in the brake status indicates whether the brake output is activated on the hardware. This corresponds to the state (opening) or (open).

Control type A or P:

1 means the brake has been activated by the safety module (brake open). This information can reach st04 with a delay of up to 10ms.

Control type K:

1 means that the brake output has been activated (brake open). The stausword bit displays only the state of the switch, the 24V supply of the brake is not monitored.

4.3 Errors and warnings

4.3.1 **Errors**

The status word displays via bit 3 (fault) when there is an error. The error type can be determined via objects ru01 exception state and st01 error code:

Index	Id-Text	Name	Function
0x2C01	ru01	exception state	KEB spec. object
0x2101	st01	orror godo	KEB spec. object
0x603F		error code	CiA402 object

4.3.1.1 Error display in ru01

The faults are coded according to the following table:

ru01	Error text	Description	st01
0	no exception	No error	0x0000
3	ERROR overcurrent PU	Overcurrent detection in the power unit has triggered (e.g. short circuit, defective power module)	0x5400
4	ERROR overcurrent analog	Exceeded overcurrent level on the control board (e.g. Incorrect setting of the controller or the torque limiting characteristic)	0x2300
5	ERROR over potential	Overvoltage in DC link (e.g. deceleration ramp too fast, braking resistor not connected, braking transistor defective)	0x3210
6	ERROR under potential	Undervoltage in DC link	0x3220
7	ERROR overload	Module overload (I ² t) => OL (long-term mean current load is above 100%)	0x3230
8	reset E. overload	Reset of overload possible OL counter (ru29) < 50% of the warning level	0x3230
9	ERROR overload 2	Module overload 2 (fast overload protection – defined by standstill continuous current and short time current limit - has responded)	0x1000
10	ERROR overheat powmod.	Overtemperature power components (heat sink)	0x4210
11	reset E overheat pmod.	Overtemperature power components decreased (temperature 5° below OH level)	0x4210
12	ERROR overheat internal PU	Overtemperature internal power unit	0x4110
13	reset E. overheat intern PU	Overtemperature internal power unit decreased	0x4110
14	ERROR motorprotection	electronic (software) motor protection has triggered	0x1000
15	reset E. motorprotection	Error motor protection function can be reset	0x1000
16	ERROR drive overheat	Temperature sensor in the motor (e.g. PTC or KTY) has triggered	0x4310
17	reset ERROR drive overheat	Overtemperature motor decreased	0x4310

ru01	Error text (continuation)	Description	st01
18	ERROR overspeed	Overspeed	0x1000
	Ziviteri evelepeed	(speed > pn26 * rated speed)	OX 1000
00	EDDOD Line late	Error at presetting motor data	0.4000
20	ERROR drive data	(Standardization of the motor data triggers an error => motor data do not match)	0x1000
21	ERROR motordata not stored	Motor data are not confirmed by dr99	0x1000
22	ERROR ident	during identifikation an error occured (Information about the type of error in dr57)	0x1000
		Speed difference higher than level	
23	ERROR speed diff	(the monitoring of the difference between the set- point speed and actual speed within a configurable time has responded pn38pn41)	0x1000
24	ERROR fieldbus memory	Incorrect drive poftwere configuration	0x1000
38	ERROR memory size	Incorrect drive software configuration	0x1000
40	ERROR FPGA conf.	Error in FPGA configuration	0x1000
41	ERROR safety module SACB comm	No communication with the safety module (only control type A or P)	0x1000
42	ERROR power unit SACB comm	No communication with the power unit (from housing size 6)	0x1000
43	ERROR enc.intf. SACB comm.	No communication with encoder interface	0x1000
44	ERROR invalid power unit data	Invalid power unit data	0x1000
47	ERROR power unit flash	The plausibility check of the Flash memory of the power unit CPU has reported an error	0x1000
52	ERROR undervoltage phase	Phase failure at the mains input (L1,L2,L3)	0x1000
55	ERROR safety	The safety module has reported an error (only for control type A or P)	0x1000
56	ERROR software switch left	Coffee and limit and table has tributed and an array	0x1000
57	ERROR software switch right	Software limit switch has triggered an error	0x1000
58	ERROR fieldbus watchdog	Fieldbus watchdog has responded	0x1000
59	ERROR prg. input	External error was triggered via programmable digital input	0x1000
60	ERROR safety module type changed	The safety module has been replaced without au-	0x1000
61	ERROR safety module changed	thorisation	0x1000
62	ERROR power unit changed	Power unit changed (de20 / de21)	0x1000
63	ERROR enc. intf. changed	Changed encoder interface (de48)	0x1000
64	ERROR power unit type changed	Power unit type changed (de26 / de27)	0x1000
65	ERROR enc. intf. version	Invalid version of the encoder interface	0x1000
66	ERROR overcurrent PU	Overcurrent	0x1000
67	ERROR max acc/dec	Max. acceleration/deceleration setting exceeded (monitoring especially necessary for cyclic synchronous operating modes)	0x1000

ru01	Error text (continuation)	Description			st01
68	ERROR overcurrent Brake				0x1000
83	ERROR Limit Switch Forward	positive (hardware	positive (hardware) limit switch released		
84	ERROR Limit Switch Reverse	negative (hardwar	e) li	mit switch released	0x1000
85	ERROR Override Limit Switch Forward	positive (hardware range of hm19	e) lir	nit switch override out of the	0x1000
86	ERROR Override Limit Switch Reverse	negative (hardward range of hm20	e) li	mit switch override out of the	0x1000
87	ERROR Limit Switch	one (hardware) lim	nit s	limit switches released or witch released and only the ation corresponds to the limit	0x1000
89	ERROR at encoder type change	Incompatible enco versions	der	interface and drive software	0x1000
90	ERROR enc.intf.fast comm.	Communication er face	ror	control board-encoder inter-	0x1000
91	init encoder interface	Encoder interface		nitialisation routine	0x1000
92	ERROR encoder A	Error encoder A		ardware defect or incorrect tting of the encoder parame-	0x1000
93	ERROR encoder B	tora (tuna ingramenta per reva		0x1000	
94	init encoder A	Initialisation encod	Initialisation encoder A is running		
95	init encoder B	Initialisation encoder B is running		0x1000	
96	ERROR encoder missing		No encoder type is selected in ec16 in a mode that requires an encoder		
97	ERROR overspeed (EMF)	pn72 overspeed le	evel	(EMF) has been exceeded	0x1000
98	ERROR encoder A changed	Encoder A change	ed	Serial number read by the encoder is not equal to the	0x1000
99	ERROR encoder B changed	Encoder B change	ed	stored serial number (ec48 != ec49)	0x1000
100	ERROR overcurrent out1	Overcurrent at dig	ital	output 1	0x1000
101	ERROR overcurrent out2	Overcurrent at dig	ital	output 2	0x1000
102	ERROR overcurrent out3	Overcurrent at dig	ital	output 3	0x1000
103	ERROR overcurrent out4	Overcurrent at dig	ital	output 4	0x1000
105	ERROR overcurrent encoder	Overcurrent at end	code	er interface	0x1000
106	ERROR overcurrent 24V	Overcurrent at 24V outputs of the control terminal block		0x1000	
107	ERROR over frequency	The maximum output frequency de120 has been exceeded. (599Hz)		0x1000	
108	reset E. overheat intern CB	Overtemperature control board decreased		0x1000	
109	ERROR overheat internal CB	Overtemperature i	nte	rnal control board	0x1000
110	ERROR OH ramp			me between the occurrence of rror and the modulation	0x1000
111	ERROR OHI ramp	switching off has e			0x1000
112	ERROR 24V supply low	24V supply has dr	opp	ed to a value lower than 18V	0x1000

ru01	Error text (continuation)	Description	st01
115	ERROR GTR7 always OFF	GTR7 cannot be switched on	0x1000
116	ERROR GTR7 OC	UCE monitoring GTR7 reports OC	0x1000
117	ERROR GTR7 always ON	GTR7 cannot be switched off	0x1000
118	OC at 5V diag	Short circuit of 5V at the diagnostic interface	0x1000
119	ERROR extreme overpotential	extreme overpotential in DC link (can lead to damage of the DC capacities)	0x3210
120	ERROR DC capacitor damaged	DC capacities have been damaged by too long / too high overvoltage in the DC link	0x1000
121	ERROR runtime	Activation of too many functions. => Runtime monitoring	0x1000
122	ERROR UP2	Error, if the change of the state machine to "switched on" is requested and after the delay time in ru04 supply unit state the state "run" is not yet reached.	0x1000
123	ERROR LT ready	an error is triggered if the "ready" signal of the power unit disappears during activated modulation.	0x1000
124	General Fielbus Error	General Fielbus Error (Analysis via parameter fb91 fieldbus error code)	0x1000
125	ERROR fieldbus type changed	The selected fieldbus type in fb68 fieldbus selection has been changed and no PowerOn reset has been performed yet	0x1000
126	ERROR overheat 2 powmod.	Overtemperature heat sink (2)	0x4210
127	reset E. overheat 2 pmod.	Overtemperature heat sink (2) decayed	0x4210
128	ERROR overheat 3 powmod.	Overtemperature heat sink (3)	0x4210
129	reset E. overheat 3 pmod.	Overtemperature heat sink (3) decayed	0x4210
130	ERROR overheat 2 internal	Overtemperature internal (2)	0x4210
131	reset E. overheat 2 intern	Overtemperature internal (2) decayed	0x4110
132	ERROR overheat 3 internal	Overtemperature internal (3)	0x4110
133	reset E. overheat 3 intern	Overtemperature internal (3) decayed	0x4110
134	ERROR Safety Stop	Safety module signals reaction SS1 or SS2	0x1000
135	ERROR File Code	Only P card: invalid file code	0x1000
136	ERROR blockade detected	ERROR drive blockade triggered	0x1000
139	ERROR STO	STO triggered by the safety module	0x1000
140	ERROR Fail Safe	Fail Safe triggered by the safety module	0x1000

4.3.1.2 Programmable error response

Many errors require an immediate shutdown of the modulation. Thus the motor coasts down.

The response to errors / malfunctions which do not require immediate modulation shutdown can be set in the pn parameters.

4.3.1.2.1 Configurable errors

The behaviour can be programmed for the following errors:

			Possible	e error resp	oonse	
Index	Id-Text	Name	Fault		Stop ramp	Warning / Ignore
0x2A04	pn04	ERROR OL stop mode	X*	Х		
0x2A08	pn08	ERROR OH stop mode	X*	Х		
0x2A0A	pn10	ERROR OHI stop mode	X*	Х		
0x2A0C	pn12	ERROR dOH stop mode	X*	Х	х	Х
0x2A10	pn16	ERROR OH2 stop mode	X*	Х	х	Х
0x2A14	pn20	ERROR SW-switch stop mode	Х	Х	х	X*
0x2A16	pn22	ERROR fb watchdog stop mode	Х	Х	х	X*
0x2A1B	pn27	ERROR overspeed stop mode	X*	Х	х	Х
0x2A1D	pn29	prg. error stop. mode	Х	Х	х	X*
0x2A22	pn34	ERROR encoder A stop mode	X*			Х
0x2A23	pn35	ERROR encoder B stop mode	Х			X*
0x2A25	pn37	ERROR max acc/dec stop mode	Х	Х	х	X*
0x2A28	pn40	ERROR speed diff stop mode	Х	Х	х	X*
0x2A47	pn71	E. overspeed (EMF) st. mode	X*	Х	х	Х
0x2A49	pn73	E.enc A changed stop mode	Х		х	X*
0x2A4A	pn74	E.enc B changed stop mode	Х		х	X*
0x2A4D	pn77	E.UP2 stopping mode	Х			X*
0x2A4E	pn78	ERROR limit switch forward reaction	Х	Х	Х	X*
0x2A4F	pn79	ERROR limit switch reverse reaction	Х	Х	Х	X*
0x2A50	pn80	safety stop mode	Х	Х	Х	X*
0x2A51	pn81	warning OH stop mode	Х	Х	Х	X*
0x2A52	pn82	warning OHI stop mode	Х	Х	х	X*

^{* =} Default value

4.3.1.2.2 Error reaction

The single error reactions are defined as follows:

Valu e	Plaintext	Description
0	fault	The drive changes directly into state FAULT. The drive coasts down.
1	dec. ramp -> fault	The set speed is controlled at the error reaction ramp to the target speed (pn47). After fault reaction time the drive changes into state FAULT.
2	quickstop	Bit 2 (no quickstop) in the controlword is set to zero => the "quickstop" reaction is executed. Only after a reset (Bit 7 fault reset in the controlword) Bit 2 is reset.
3	disable operation	The enable operation bit in the controlword is set to zero => the "disable operation" reaction is executed. If the error/malfunction signal is no longer present, the EnableOperation bit is set again according to the controlword.
4	shut down	The SwitchOn bit in the controlword is set to zero => "shut down" reaction is executed. If the error/malfunction signal is no longer present, the SwitchOn bit is set again according to the controlword.
5	dec. ramp -> fault auto retry	The reaction corresponds to value 1 with the following difference: If the error signal becomes inactive during the FAULT REACTION ACTIVE state, the fault resets itself. The drive changes to the SWITCHED ON state after the error response time.
6	warning	The fault is only displayed in the warning state. The drive does not change into state FAULT REACTION ACTIVE.
7	off	The error is ignored and not displayed in the warning state. The drive does not change into state FAULT REACTION ACTIVE.
8	quickstop auto re- try	The reaction corresponds to value 2 with the following difference: If the error signal becomes inactive, the error resets itself. The quickstop function is exited.
9	fault, auto retry	The fault that triggered the stop function is automatically reset.

The settings "0: fault", "1: dec. ramp -> fault", "5: dec. ramp -> fault, auto retry" and "9: fault, auto retry" are error responses where the error is displayed in ru01 and st00 (CiA 0x6041) statusword.

The control word is manipulated for values "2: quickstop", "3: disable operation", "4: shut down" and "8: quickstop, auto retry". Bit 2 (no quick stop), bit 3 (Enable-Operation) or Bit 0 (SwitchOn) is internally set to zero according to the programmed response.

Reaction 0: fault

The drive changes directly into state **fault**, the modulation is switched off and the drive coasts down

• Reaction 1: dec ramp to fault

If value "1: dec ramp to fault" is selected, the drive changes into **Fault reaction active** when the error occurs.

Bit 2 (fault reaction mode) in co32 state machine properties has the following effect:

- 0: direct => the drive changes immediately into state Fault. The control of the power components is inactive in this state, the motor coasts down. The adjustment of the pn parameters (fault or dec. ramp) is invalid
- 1: application specific => the behaviour of the drive for errors can be influenced by the pn parameters if immediately switching off of the drive is not required.

If "1: application specific" is selected as fault reaction mode, the setpoint speed is set to the target speed (pn47) at the fault reaction ramp. After fault reaction time the drive changes into state **Fault**. If an error reset is already carried out during fault reaction, the drive changes into the state that results from st14 active controlword.

• Reaction 2: quickstop

Bit 2 *no Quickstop* in active controlword (st14) is set to zero. The state machine changes into the state **Quickstop Reaction Active.**

The selected reaction in 0x605A quickstop option code is executed.

The fault does not reset itself automatically. This means, only after reset (controlword Bit 7 *Fault reset*) bit 2 is set again and the Quickstop reaction becomes inactive.

The reaction becomes only effective, if in co32 state machine properties in mode enable quickstop the setting "0200h: on" is selected.

• Reaction 3: disable operation

Bit *EnableOperation* in active controlword (st14) is set to zero. The state machine changes into state *Disable Operation Active*.

The selected reaction in 0x605C disable operation option code or co32 state machine properties is executed.

If the fault is no longer present, the *EnableOperation* Bit in active controlword (st14) is set again according to the controlword internal (co31). An error reset is not necessary.

Reaction 4: shut down

Bit **SwitchOn** in active controlword (st14) is set to zero. The state machine changes into state **Shut Down Active**.

The selected reaction in 0x605B shut down option code or co32 state machine properties is executed.

If the fault is no longer present, the **SwitchOn** Bit in active controlword (st14) is set again according to the controlword internal (co31). An error reset is not necessary.

Reaction 5: dec ramp to fault, auto retry

The reaction corresponds to value 1 with the following difference: If the fault becomes inactive during the **Fault Reaction Active** state, the error resets itself. An error reset is not necessary.

The drive changes after the fault reaction time into the state defined by the setting of st14 active controlword.

• Reaction 6: warning

Warnings have no reaction to the drive.

The actual warnings can be read out in object ru02 warning bits. If a bit is set in ru02 also bit 7 *warning* in the statusword st00 (CiA 0x6041) statusword is set, can be preset via object pn28 warning mask.

Only if the corresponding bit is set in the warning mask the warning is also displayed in the status word.

The highest-priority status message is displayed in parameter ru03 warning state. In addition to the warning messages, an ERROR state can also be displayed in this object if "6: warning" is programmed as reaction for the corresponding error.

• Reaction 7: ignore

The error is ignored. There is no reaction of the drive. Neither a warning bit is set nor a warning state is displayed.

Reaction 8: quickstop, auto retry

The reaction corresponds to value 2 with the following difference: If the malfunction/error signal becomes inactive, the error resets itself.

Bit 2 in the active controlword (st14) is set again and the state **Quickstop Reaction Active** is left automatically.

Reaction 9: fault, auto retry

The reaction corresponds to value 0 with the following difference: If the malfunction/error signal becomes inactive, the error resets itself.

4.3.1.2.3 Fault reaction ramp

The used set speed ramp at fault reaction can be parameterized via the following objects.

Index	Id-Text	Name	Function
0x2A2D	pn45	fault reaction time	Waiting time after the target speed has been reached
0x2A2E	pn46	fault reaction end src	Source for abort of the fault reaction ramp => error
0x2A2F	pn47	fault reaction ref velocity	Target speed of the fault reaction ramp
0x2A30	pn48	fr acceleration for [s-2]	max. acceleration at pos. speed
0x2A31	pn49	fr deceleration for [s-2]	max. deceleration at pos. speed
0x2A32	pn50	fr acceleration rev [s-2]	max. acceleration at neg. speed
0x2A33	pn51	fr acceleration rev [s-2]	max. deceleration at neg. speed
0x2A34	pn52	fr for acc jerk ls [s-3]	max. jerk at acceleration and neg. speed (start)
0x2A35	pn53	fr for acc jerk hs [s-3]	max. jerk at acceleration and neg. speed (end)
0x2A36	pn54	fr for dec jerk hs [s-3]	max. jerk at deceleration and pos. speed (start)
0x2A37	pn55	fr for dec jerk ls [s-3]	max. jerk at deceleration and pos. speed (end)
0x2A38	pn56	fr rev acc jerk ls [s-3]	max. jerk at acceleration and neg. speed (start)
0x2A39	pn57	fr rev acc jerk hs [s-3]	max. jerk at acceleration and neg. speed (end)
0x2A3A	pn58	fr rev dec jerk hs [s-3]	max. jerk at deceleration and neg. speed (start)
0x2A3B	pn59	fr rev dec jerk ls [s-3]	max. jerk at deceleration and neg. speed (end)
0x2A3C	pn60	fault reaction ramp mode	Ramp mode (s-curves, etc.)
0x2A3E	pn62	fault reaction properties	Properties of the fault reaction ramp

If an error occurs, where **Fault reaction ramp** (dec ramp -> fault) is selected as error reaction, the drive changes into state **Fault reaction active**.

The drive accelerates or decelerates with the adjusted ramps (pn48...pn60) to the target speed (pn47 fault reaction ref velocity).

The possible settings for pn60 correspond to those in co60 and are described in detail in chapter 4.8.2.4.3 Operating modes of the ramp generator

The waiting time after fault reaction time (pn45 fault reaction time) begins after reaching the target speed.

After this time or if the selected digital input for the fault reaction (pn46 fault reaction end src) is activated, the drive changes into state **Fault**.

The following picture shows an exemplary process of a fault reaction:



Figure 3: Process of a fault reaction

4.3.1.2.4 Fault reaction properties

The behavior of the fault reaction can be influenced via object pn62.

Index	Id-Text	Name	Function
0x2A1E	pn62 fault reaction properties		Properties of the fault reaction

The meaning of the single bits in pn62 is defined as follows:

pn62	fault reaction properties 0x2A3E		
Bit	Name Note		
0	Speed src	Source for the starting speed of the deceleration ram 0: Setpoint speed (output ramp generator) 1: Actual speed	qn

4.3.1.2.5 Error reaction/stop_function torque limit

Another (higher) torque limit is required in some applications for the state Fault reaction active.

It is often requested to decelerate with maximum torque (e.g. at the limiting characteristic), then to reduce the torque to a small residual value during the standstill phase (e.g. in order to relieve a shaft) before the modulation is then switched off.

Which torque limit shall be active during fault reaction can be selected in co61 Bit 0...5.

In co61 bit 6...8 can be selected, which torque limit shall be active during the waiting time (pn45 fault reaction time) after reaching the final speed (pn47 fault reaction ref velocity).

With co61 bit 9 and 10 it can be defined whether the change of the torque limits should be abrupt or slope-limited.

Stop functions such as Quickstop, Shut Down, Disable Operation, etc. can use the error response ramp to stop. Such a "stop process" can also be a reaction to an external error event. For this reaction the same options shall be available for torque changes as during "FAULT REACTION ACTIVE". Bits 11 and 12 can be programmed accordingly for this

co61	torque lim	mode		0x253D
Bit	Function	Value	Plaintext	Notes
		0	no change	all torque limits valid as always
		1	cs12	Torque limit is cs12 cs13cs16 without function
02	source	2	cs15 / cs16	cs15 applies to positive direction of rotation cs16 applies to negative direction of rotation cs12 without function
		3	max torque charact (dr group)	cs12cs16 without function only limiting characteristic effective
		4	co62	torque limit from co62
		57	reserved	
		0	no change	all torque limits valid as always
		8	cs12	Torque limit is cs12 cs13cs16 without function
35	source fieldbus watch- dog	16	cs15 / cs16	cs15 applies to positive direction of rotation cs16 applies to negative direction of rotation cs12 without function
		24	max torque charact. (dr group)	cs12cs16 without function only limiting characteristic effective
		32	co62	torque limit from co62
		4056	reserved	
		0	same as dec.	If the setpoint ramp has reached zero, the same torque limit as in deceleration is active
		64	no change	all torque limits valid as always
		128	cs12	Torque limit is cs12 cs13cs16 without function
68	reached zero	192	cs15/cs16	cs15 applies to positive direction of rotation cs16 applies to negative direction of rotation cs12 without function
		256	max torque charact. (dr group)	cs12cs16 without function only limiting characteristic effective
		320	co62	torque limit from co62
		384 448	reserved	

co61	torque lim	mode		0x253D	
Bit	Function	Value	Plaintext	Notes	
		0	off	No rise limitation /reduction limitation effective	
910	dM/dt	512	on	Rise limitation /reduction limitation (co63) always effective when torque limits are changed.	
910 divi	divirat	1024	Stop,reached zero	Rise limitation /reduction limitation (co63) during state "fault reaction active" (st12 state machine display) after reaching zero speed effective.	
11 torque options			0	only valid for fault reaction	The selection of the torque limits is only valid for FAULT REACTION ACTIVE.
		1	setting valid for all usage of fault reac- tion ramp	The settings for the behavior during FAULT REACTION ACTIVE are used for all "Stop Functions" where the Fault Reaction Ramp is used.	
12 Uic dep. torque curve options	0	only at fault reaction	The setting for shifting the limiting characteristic (ds11 torque mode => Uic dep. torque curve adapt) only applies to FAULT REACTION ACTIVE		
	curve	1	at usage of fault reaction ramp	The setting for shifting the limiting characteristic (ds11 torque mode => Uic dep. torque curve adapt) applies to all "Stop functions" that use the fault reaction ramp	

Index	Id-Text	Name	Function
0x253E	co62	selectable stop mode torque	selectable torque limit at error response

If co61 stop mode torque lim. src. is set to value cs12 or cs15/cs16 or co62, the limiting characteristic remains always effective as max. physically available torque.

Example:

The fault reaction requires a higher torque limit than standard operation.

A possible procedure is: $co61 = 9 \Rightarrow cs12$ is the valid torque limit during fault reaction.

In standard mode the actual torque limit is preset via cs13. cs14...cs16 must be set to -1 to specify the torque limits in all quadrants by cs13. cs12 must be higher than cs13 in order to cause no limitation of the standard operation.

cs13 has no effect in state fault reaction. The torque is limited only via cs12 and the always effective limiting characteristic from the dr parameters.

Index	Id-Text	Name	Function
0x253F	co63	dM/dt Limit [Mn%/ms]	Depending on the setting in co61 Bit 9,10 dM/dt limited
		-	the rate of change of the torque limit is limited.

Example for co61 torque lim mode Bit 9,10 dM/dt = 512 = on and change of the torque limit with co63 dM/dt Limit [Mn%/ms] = 7.00 %

$$dt[ms] = \frac{dM[\%]}{co63} = \frac{70\%}{7\%} = 10$$

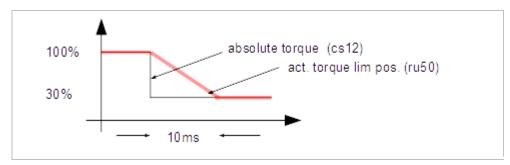


Figure 4: Example co63

4.3.2 automatic reset of errors

4.3.2.1 Auto-retry for configurable errors

For some errors for which the error reaction can be freely selected, the triggering error can be automatically reset by selecting value 5 or 9.

Valu	Plaintext	Description
е		
5	dec. ramp -> fault auto retry	The reaction corresponds to value 1 with the following difference: If the error signal becomes inactive during the FAULT REACTION ACTIVE state, the fault resets itself. The drive changes to the SWITCHED ON state after the error response time.
9	fault, auto retry	The fault that triggered the stop function is automatically reset.

4.3.2.2 Automatic fault reset UP

4.3.2.2.1 Activation

The fault response for an undervoltage fault is not selectable, but an auto-retry (automatic fault reset) can be programmed.

pn83	auto-retry activation 0x2A53		0x2A53
Bit	Plaintext	Note	
0	1: auto retry E.UP / Lt ready	Activation of automatic reset for the err ror LT ready	or UP and the er-

If the mains voltage breakdown is too long, an automatic restart is often not reasonable, since parts of the periphery are also not ready for operation, or the application requires a defined restart.

Therefore, the time wherein an Auto-Retry E.UP is performed can be limited.

The time within an auto reset is still reasonable for the application is set in pn84[1]auto-retry UP time. If precharging is completed after this time (ru04 supply unit state = 4:run), an automatic error reset is performed.

pn84[1]	auto-retry UP time		0x2A54 [1]
Value	Display	Note	
0	no time limit	automatic reset for the UP error is always perfo	rmed
1100 0	0.0110.00 s	Time within the execution of Auto-Retry UP is s	till reasonable

NOTICE

Whether an automatic reset is performed depends only on the time the error is present. If the minimum switch-off time prevents the release of the modulation afterwards, the error is reset anyway.

Often the occurrence of an error leads to the switch off of the inverter by an external control. In order that the control can react differently to the special case of "mains voltage failure", it is possible to suppress the error display/output.

The behaviour of the error display for auto retry can be defined in pn84[2] fault suppression mode.

pn84[2]	fault suppression r	mode	0x2A54 [2]
Bit	Plaintext	Note	
0	1: no display sup- pressed UP / PUready	By UP or LT ready, the "fault" bit in the statusword auto retry time UP is running If the setting of pn84[1] is "0: no time limit", the "fa	· ·
2	4: accept manual reset	The UP error can also be reset via a hardware restime. With this setting the UP error is reset at every hard precharge time is not effective when precharging a lf this bit is not activated, the error UP cannot be remanently activated (auto-retry UP time = 0: no remains present until the mains voltage is switched)	dware reset. The reduced after the "Manual Reset". eset when auto-retry UP is time limit), since the error

4.3.2.2.2 Dosplay "suppressed error"

In order to have an indication that the drive is in a "special" operating state when the error display is suppressed, this is displayed in parameter ru75 global drive state and the statusword.

ru75	global drive state 0x2C4B		0x2C4B
Bit	Name	Note	
0 3	ready for modulation	Reasons that prevent a modulation release)
47	state machine display	Display of the state of the state machine (s	ee below)
825	Description see chapter 5.8.1 ru75 global drive state		
26	error bit suppression active	The modulation is switched off due to an ererror in the statusword and ru01 is suppres	
2731	reserved	not used	

Bits 4...7 display the actual state of the state machine.

ru75		global drive state	Bit 47: state machine display
Bit	Value	Plaintext	
47	240	suppressed error active	Indication that the modulation is switched off due to an error, but the error bit in the statusword and the error display in ru01 are not set.

In addition to the display in ru75, bit 14 "Special function active" is used in st00 (CiA 0x6041) statusword to indicate that "error supression" is active.

Bits 5 "no quick stop", 6 "switch on disabled" and 14 "special function" are set in the statusword (0x2100 st00, 0x6040).

4.3.3 Warnings

Additionally to the errors which always lead to drive stop, the drive can display warnings. Warnings have no reaction to the drive. The existance of a warning can be displayed only in bit 7 of the status word. The actual warnings can be read out in object ru02 warning bits.

Index	Id-Text	Name	Function
0x2C02	ru02	warning bits	Display of the warnings bit-coded

If a bit is set in ru02 also bit 7 in the status word is set can be preset via object pn28 warning mask.

Index	Id-Text	Name	Function
0x2A1C	pn28	warning mask	Display of warnings to perform for setting the "warning" bits in the status word (bit-coded)

The warning is displayed in bit 7 of the status word only if the corresponding bit in the warning mask is set.

The meaning of the single bits in ru02 and pn28 is defined as follows:

ru02	warning bits		0x2C02
pn28	warning mask		0x2A1C
Bit	Name	Note	
0	OL	Warning level overload exceeded (pn03 / pn04)	
1	OL2	Warning level overload power semiconductor exceede	ed (pn05)
2	OH	Warning level heat sink temperature exceeded (pn07	/ pn08)
3	OHI	Warning level unit internal temperature exceeded (pno	09 / pn10)
4	dOH	Warning level motor temperature exceeded (pn11 / pr	n12 / pn13)
5	OH2	Warning level motor protective circuit-breaker exceed	ed (pn15 /pn16)
6	Watchdog	Watchdog time is up (pn21 / pn22)	
7	Reserved	Reserved	
8	ProgErr	Programmable external error (pn29 / pn30)	
9	OS	Warning level motor protective circuit-breaker exceed	ed (pn26 /pn27)
10	MaxAccDec	Warning level max. acceleration exceeded (pn36 / pn37)	
11	SwSwitch	Software limit switch triggered (pn18 / pn19 / pn20)	
12	SpeedDiff	Warning level speed difference exceeded (pn38 / pn3	9 / pn40)
13	Reserved	Reserved	
14	ENC-A	Encoder A warning (pn34)	
15	ENC-B	Encoder B warning (pn35)	
16	Uph	Input phases failure detection	
17	Limit Switch	Hardware limit switch triggered (pn78 / pn79)	
18	blockage	Blockage detection (pn 87)	
19	suppressed UP	Error UP has triggered, display suppressed as error (on84)
20	suppressed PU ready	Error UPready has triggered, display suppressed as e	error (pn84)
21	STO STO triggered by the safety module (sm11)		
22	Fail Safe	Fail Safe triggered by the safety module (sm10)	

The highest-priority status message is displayed in parameter ru03. Besides the warnings, also an ERROR state can be displayed in this object (=> chapter 4.3.1 Errors), if "warning" is programmed as error response for the appropriate error.

In addition the following warning messages can be displayed:

ru03	Error text	Description
27	WARNING overload	Module overload ru29 (I ² t -function) > pn03 OL warning level
29	WARNING overload 2	Module overload 2 ru27 (fast overload protection) > pn05 OL2 warning level
30	WARNING overheat powermod.	Heat sink temperature ru25[1], ru25[2] or ru25[3] > pn07
32	WARNING overheat intern.	Internal temperature ru26[1], ru26[2], ru26[3] or ru77 > pn09
34	WARNING motorpro- tection	motor protection counter ru32 > pn15 OH2 warning level
36	WARNING drive over- heat	KTY: ru28 motor temperature > pn11dOH warning level PTC: PTC status (ru28) = PTC open If in pn12 "warning" is programmed as error response, ru03 changes after expiration of the dOH delay time pn13 into ERROR state
137	WARNING blockade	Warning drive blockade
138	WARNING PUready	Warning power unit not ready

4.4 Protection functions

Errors and warnings are also triggered by the protection functions of the drive. The function and parameterizing of the protection functions is described in the following.

4.4.1 Overload (OL)

The monitoring of the continuous load of the inverter can be influenced via the following objects:

Index	Id-Text	Name	Function
0x2C1D	ru29	OL counter	OL(I ² t function) actual value in % / 100% = error
0x2A03	pn03	OL warning level	OL level, where a warning is triggered
0x2A04	pn04	E. OL stop. mode	Error reaction (=> see Chapter 4.3.1 Errors)
0x2C02	ru02	warning bits	Display of the warnings bit-coded (=> 4.3.3 Warnings)
0x2A1C	pn28	warning mask	Mask for warning bit in the status word (=> 4.3.3 Warnings)

The OL function protects the inverter against permanent overload.

Depending on the cooling, a long-term operation in overload range can cause that the error "ERROR overheat powmod." (overtemperature power components) switches off the drive already before OL function response.

The following diagram shows the switch-off time for an inverter with overload characteristics depending on the constant load:

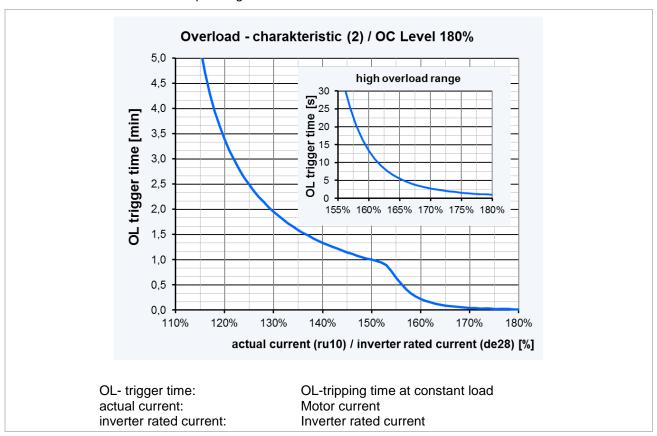


Figure 5: Overload characteristic

The overload characteristic valid for the respective inverter can be found in the installation manual for the power unit.

The drive switches off automatically on reaching the overload limit (ru29 OL counter = 100%).

The error reaction can be programmed as described above via the object pn04 E.OL stop mode. A warning level can be programmed additionally.

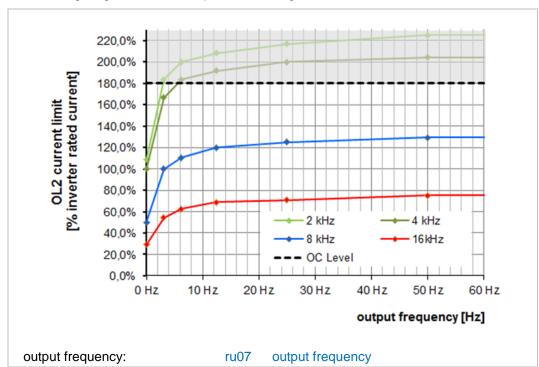
On reaching this "OL-Counter" value bit 0 is set in the warning state and with appropriate adjustment of the warning mask also bit 7 is set in the status word.

The error or warning can be reset when the OL counter has reached the value of * pn03 OL warning level / 2.

4.4.2 Overload power components (OL2)

The monitoring of the inverter load at small frequencies can be influenced via the following objects:

Index	Id-Text	Name	Function
0x2C1B	ru27	OL2 counter	OL2 actual value in % of the error-triggering level
0x2A05	pn05	OL2 warning level	OL2 level, where a warning is triggered
0x2C02	ru02	warning bits	Display of the warnings bit-coded (=> 4.3.3 Warnings)
0x2A1C	pn28	warning mask	Mask for warning bit in the status word (=> 4.3.3 Warnings)
0x350E	is14	overload protect mode	OL2 protection, no respectively reduced overload capacity
0x3514	is20	OL2 prot. gain	Determines the dynamic behavior in protection mode 2
0x3515	is21	OL2 safety fact.	Parameterization of the safety distance to the OL2 limit with overload protection
0x2C49	ru73	Imot/ImaxOl2	actual current / short time current limit
0x301E	ud30	OL2 current limits	Current limits resulting from the OL2 function
0x301F	ud31	OL2 diagnostic counter	OL2 diagnostic parameters


4.4.2.1 OL2 function

4.4.2.1.1 Output frequency dependent OL2 current limit

The power components are more loaded by current in lower frequency range than in higher output frequencies.

Therefore the permissible current (short time current limit) is lower than the maximum current (de29 inverter maximum current).

The inverter normally outputs at least rated current as continuous current at 0Hz output frequency and rated switching frequency. The maximum current is available from maximum 10 Hz as standard. Detailed information can be found in the installation manual for the corresponding power unit housing size.

The following diagrams show sample OL2 limiting characteristics:

Figure 6: Overload (OL2) limiting characteristic

The ratio of the actual output current to the permissible OL2 current at this frequency is controlled via PT1 element with a time constant of 200ms.

The output value of this PT1 element is displayed in parameter ru27 OL2 counter. The drive switches off automatically on reaching the overload limit (ru27 OL2-Counter = 100%).

ru73 Imot/ImaxOl2 displays the ratio of the actual motor current to short time current limit.

The short-time current is dependent on the actual switching frequency.

If "Derating" (automatic switching frequency reduction if the motor current exceeds the short-time current limit for the respective switching frequency) is used, then ImaxOl2 is equal to the short-time current limit for the minimum switching frequency that can be activated.

4.4.2.1.2 Heat sink temperature dependent OL2 current limit

If the actual heatsink temperature ru25[1] heatsink temperature 1 is below the OH threshold, a higher current is possible without triggering an OL2 error. The maximum possible current depends on the difference between the current temperature and the OH threshold.

The maximum current is reached at 40°C at the latest. Thereafter, a further reduction of the heat sink temperature causes no further increase of the maximum possible current.

NOTICE

The increase of the OL2 limit is intended for applications when the increased current is rarely needed (e.g. heavy starting after long standstill or other rarely occurring events). Increasing the OL2 current limit increases the load of the power module and reduces the lifetime of it.

The increase of the OL2 limit can be activated with parameter is17 temperature dependent OL2 offset.

The derating always occurs at the "base" OL2 limit without temperature-dependent increase. If a lower switching frequency is also permissible for the application, it is always reasonable to use this instead of loading the inverter power module.

The possible temperature-dependent increase depends on the used inverter.

NOTICE

With the increase of the heat sink temperature the temperature-dependent increase of the OL2 current reduces to zero. This must be considered when testing / designing the application.

Parameter is17 temperature dependent OL2 offset is a **PowerOn Parameter**: only if value 2 is set in is17 when switching on, this value can also be used during operation.

If is17 is 1 or zero when switching on, then a setting of is17 causes the setting "2 maximum" but only the moderate increase is activated during the current PowerOn cycle and only after PowerOn the selected setting "2 maximum" becomes effective.

The increase of the OL2 limit is adjustable in 2 steps:

▶ basic current (0 = off)

No increase over the actual OL2 curve is possible. There is no dependence between heat sink temperature and OL2 current.

► moderate increase ("1" moderate)

The factors for a possible increase of the OL2 curve are selected in such a way that the lifetime of the power modules is only moderately reduced when the overload range is used.

▶ maximum increase ("2" maximum)

The factors for a possible increase of the OL2 curve are selected in such a way that the lifetime of the power modules is significantly reduced when the overload range is used.

This setting should only be selected if it is ensured that this increased OL2 current is only rarely used.

Example:

The following graph shows the possible increase of the OL2 current limit for an air-cooled F6 housing 3 with 60A rated current and 4 kHz rated switching frequency at ru72 act. switch freq 4 kHz and a heat sink temperature (ru25[1] heatsink temperature 1) of 40°C.

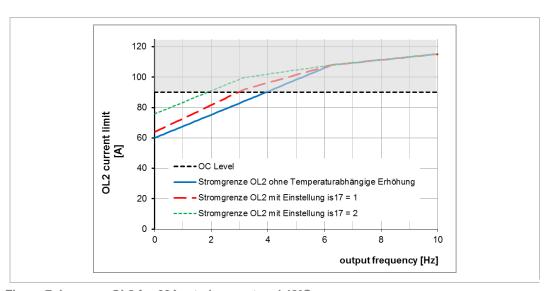


Figure 7: Increase OL2 for 60A rated current and 40°C

4.4.2.2 Diagnosis

Different current limits are displayed in ud30 OL2 current limits:

Sub- Idx	Name	Function
1	Icont offset	Value of the temperature-dependent OL2 increase
2	Icont derating	Current at which derating to a lower switching frequency is set
3	Icont act switching freq	OL2 limit at the current switching frequency
4	Imax OL2	OL2 limit at the lowest switching frequency
5	Imax control	OL2 limit for current setpoints in the control

There are 3 diagnostic counters to see how long the individual current limits have been exceeded.

Resolution 0.2 seconds / update every 4...6.5 seconds

ud31[1] basic current => display how long the standard OL2 value has been exceeded.

The following counters are only active if the temperature-dependent OL2 increase in is17 is activated.

If mode "1 moderate" is activated, ud31[2] counts, if mode "2 maximum" is activated, ud31[3] counts.

ud31[2] moderate increase => display how long the moderately increased OL2
value has been exceeded

ud31[3] maximum increase => display how long the maximum increase OL2 value
has been exceeded

4.4.2.3 OL2 - Warning

A warning level can be programmed additionally. On reaching this OL2-Counter value bit 1 is set in ru02 warning bits and with appropriate adjustment of the warning mask also bit 7 is set in the status wort.

The error and the warning can be reset, if the value of the OL2 counters is less than 80% of the warning level.

4.4.2.4 OL2 protection

Protection against the error OL2 can be activated via object is14 overload protect mode for current controlled operation. There are two different modes:

is14	overload protect n	node	0x350E
Value	Name	Note	
0	off	no protection against OL2, but overload reserves are fully	y usable
1	on, limit = is21	The permissible total current is limited according to the OL2 limiting characteristic. The permissible percentage of the OL2 current, to which the current setpoint is limited, must be adjusted in is21 OL2 safety fact. The most stable OL2 protection is achieved with this function, provided the safety distance to OL2 is selected not too small. No short-term overload reserves are available in the lower frequency range. In the whole frequency range the current is limited to Imax = (de29 inverter maximum current * is21 OL2 safety fact).	
2	The current is not limited initially if there is sufficient distance between OL2 counter and is21 OL2 safety fact The current limit is reduced to the OL2 limit characteristic value only when the OL2 counter reaches the value of is21. An OL2 error can rather occur in this mode caused by too high factor is20 OL prot. gain or too high value for OL2 safety fact Therefore overload reserves are available for a short period. Permanently the current in the whole frequency range is also limited to de29 inverter maximum current * is21 OL2 safety fact.		value only when the high factor is 20 OL2 re overload reserves

The permissible total current is limited in mode 2 only if the OL2 counter exceeds a certain value.

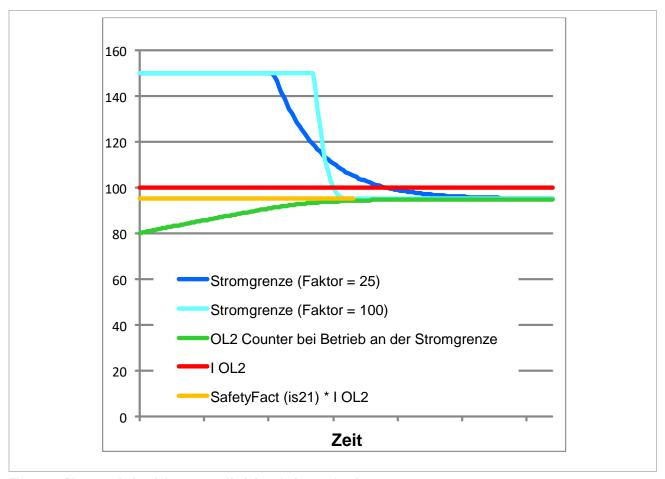


Figure 8: Characteristic of the current limit in relation to the time

Characteristic of the current limit in relation to the time when operating at the current limit for different values of is20 OL2 prot gain. The higher the factor, the steeper the descent of the current limit when the OL2 counter reaches the safety factor.

4.4.3 Overtemperature heatsink (OH)

NOTICE

the inverter is not a temperature measuring device!

The detection of the temperature only serves to protect the inverter and is, depending on the device type and the current measuring point, subject to varying degrees of tolerance and error.

Depending on the device size, there are only one or more heat sink temperature values. If an inverter does not support heat sink temperatures 2 or 3, "5000: temperature measurement not supported" is displayed.

Each supported heat sink temperature has its own overtemperature level and its own error code.

Index	Sub -ldx	ld- Text	Name	Function
	0		heatsink temperature values	Heat sink temperature at different measuring points (depending on the power unit size)
	1		heatsink temperature 1	Display of the heatsink temperature measuring point 1
0x2C19	2	ru25	heatsink temperature 2	Display of the heatsink temperature measuring point 2
	3	-	heatsink temperature 3	Display of the heatsink temperature measuring point 3
	4		minimal distance to OH	Display of the difference between the heatsink temperature and the associated error trigger value
0x2A06	0	pn06	temperature warning setting mode	Selection of the reference level for generating the overtemperature warning
0x2A07	0	pn07	OH warning level	Temperature when a warning is triggered
0x2A08	0	pn08	E.OH stop mode	Error reaction (=> see Chapter 4.3.1 Errors)
0x2A51	0	pn81	warning OH stop mode	Error reaction to pre-warning (=> also chapter 4.3.1 Errors)
0x2C02	0	ru02	warning bits	Display of the warnings bit-coded (=> 4.3.3 Warnings)
0x2A1C	0	pn28	warning mask	Mask for warning bit in the status word (=> 4.3.3 Warnings)

The drive switches off automatically on reaching an unit-dependent maximum heat sink temperature. The error reaction can be programmed as described above via the object pn08 E.OH stop mode (immediate switching off, or triggering of **FAULT REACTION ACTIVE**).

The length of time required to shutdown the drive depends on many factors: e.g. the duration of the deceleration ramp and settings in brake handling (co24 brake control closing delay and co25 brake control closing time).

The maximum time between occurrence overtemperature and switch-off modulation is 2 seconds.

If the time exceeds 2 seconds and the overtemperature error is still present, it will be switched off with error message 110: ERROR time OH.

If these 2 seconds are too small to ensure a meaningful completion of the machine cycle, a warning level pn07 OH warning level can be programmed.

The reaction to the warning is freely adjustable. All setting options for configurable errors are available.

The default setting is "Warning". That means: upon reaching the pre-warning temperature, bit 2 is set in ru02 warning bits and with respective setting of the warning mask also bit 7 in the status word.

pn06 defines how the reference level for generating the overtemperature warning is determined:

pn06	temperature warning set	temperature warning setting mode		
Value	Name	Function		
0	absolute value	ru25[1] heatsink temperature 1, ru25[2] heatsink temperature 2 and ru25[3] heatsink temperature 3 are compared with pn07 OH warning level. If one of the heatsink temperatures is higher than the comparison value, the warning becomes active. If all heatsink temperatures are lower than the comparison value minus the hysteresis (5 °C), the warning is reset.		
1	relative to error level ping threshold whose undershooting shall trigger the warning. If one of the heatsink temperatures is closer to its associated shutdowr threshold than pn07, the warning becomes active. The warning will be reset if all heatsink temperatures are outside the range of pn07 plus hy teresis (5 °C).		ne warning. associated shutdown The warning will be	

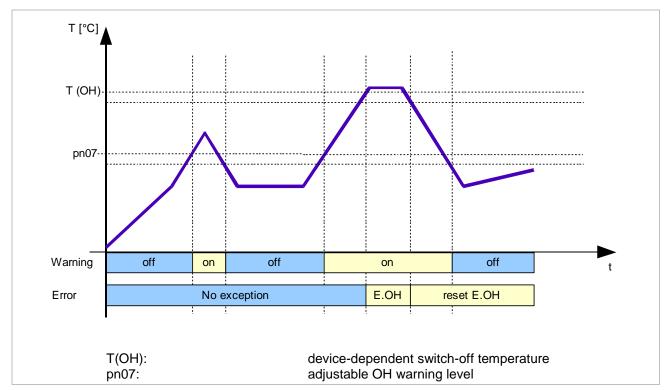


Figure 9: Overtemperature heatsink (OH)

4.4.4 Overtemperature unit (OHI)

NOTICE

the inverter is not a temperature measuring device!

➤ The detection of the temperature only serves to protect the inverter and is, depending on the device type and the current measuring point, subject to varying degrees of tolerance and error.

Index	Subidx	Id-Text	Name	Function
	0		internal temperature PU values	Internal temperature in the power unit (PowerUnit) at different points (depending on the inverter size)
	1		internal temperature PU 1	Internal temperature in the power unit measuring point 1
0x2C1A	2	ru26	internal temperature PU 2	Internal temperature in the power unit measuring point 2
	3		internal temperature PU 3	Internal temperature in the power unit measuring point 3
	4		minimal distance to OHI	Display of the smallest difference between an inter- nal temperature and the associated error trigger value
0x2C4D	0	ru77	internal temperature CB	Internal temperature on the control board (ControlBoard)
0x2A06	0	pn06	temperature warning set- ting mode	Selection of the reference level for generating the overtemperature warning
0x2A09	0	pn09	OHI warning level	Internal temperature (of the power unit or control board) when OHI warning is triggered
0x2A0A	0	pn10	E.OHI stop mode	Error reaction (=> see Chapter 4.3.1 Errors)
0x2A52	0	pn82	warning OHI stop mode	Error reaction to pre-warning (=> also chapter 4.3.1 Errors)
0x2C02	0	ru02	warning bits	Display of the warnings bit-coded (=> 4.3.3 Warnings)
0x2A1C	0	pn28	warning mask	Mask for warning bit in the status word (=> 4.3.3 Warnings)

The internal temperature is measured at several points, with one sensor on the control board and one or more sensors in the power unit.

On reaching an unit-dependent maximum internal temperature, the drive behaves according to the setting of pn10 E.OHI stop mode.

The length of time required to shutdown the drive depends on many factors. The maximum time between occurrence overtemperature and switch-off modulation is 2 seconds.

If the time exceeds 2 seconds and the overtemperature error is still present, it will be switched off with error message 111: ERROR time OHI.

If these 2 seconds are too small to ensure a meaningful completion of the machine cycle, a warning level pn09 OHI warning level can be programmed. Upon reaching this temperature, bit 3 is set in ru02 warning bits and with respective setting of the warning mask also bit 7 in the status word.

The reaction to the warning is freely adjustable. All setting options for configurable errors are available.

The default setting is "Warning". That means: upon reaching the pre-warning temperature, bit 2 is set in ru02 warning bits and with respective setting of the warning mask also bit 7 in the status word.

pn06 defines how the reference level for generating the overtemperature warning is determined (for the description of pn06 see chapter 4.4.3 Overtemperature heatsink (OH)).

4.4.5 Overtemperature motor (dOH)

The monitoring of the motor temperature can be influenced via the following objects:

Index	Id-Text	Name	Function
0x2C1C	ru28	motor temperature	Display of the motor temperature
0x2221	dr33	motor temp sensor type	0 = KTY 84-130, 1 = PTC, 2 = via encoder, 3 = KTY 83 110, 4 = PT1000, 5 = freely defined sensor characteristic
0x2A0B	pn11	dOH warning level	Motor temperature at which a warning is triggered (not valid for PTC evaluation)
0x2A0C	pn12	E.dOH stop mode	Error reaction (=> see Chapter 4.3.1 Errors)
0x2A0D	pn13	E.dOH delay time	Only active for PTC: time between triggering of the PTC (sets the warning bit) and triggering of error dOH
0x2A0E	pn14	dOH error level	Motor temperature at which an error is triggered (not valid for PTC evaluation)
0x2C02	ru02	warning bits	Display of the warnings bit-coded (=> 4.3.3 Warnings)
0x2A1C	pn28	warning mask	Mask for warning bit in the status word (=> 4.3.3 Warnings)
0x221E	dr30	motor sensor defi- nition	Parameter structure for the definition of a customer-specific characteristic for detection of the motor temperature

4.4.5.1 PTC evaluation

Values of ru28 motor temperature when using a PTC sensor:

PTC according to DIN EN 60947-0				
Resistance	Description	Display ru28		
< 750 Ω	T1-T2 closed	PTC closed		
0.751.5kΩ reset resistance	Transition T1-T2 open => closed			
1.65k…4kΩ response resistance	Transition T1-T2 closed => open			
>4kΩ	T1-T2 open	PTC open		

4.4.5.2 KTY / PT1000 evaluation

Values of ru28 motor temperature when using a KTY or PT1000 sensor:

KTY 84-130	KTY 83-110	PT1000	Temperature
498Ω	820Ω	1000 Ω	0°
1kΩ	1670Ω	1385 Ω	100°C
1521Ω	2535Ω	1666 Ω	175°C
1722Ω	-	1758 Ω	200°C

[&]quot;Short circuit" is displayed when the resistance is too low and "no connection" is displayed when the resistance is too high.

4.4.5.3 Free-programmable sensor

If the used motor temperature sensor is an unknown sensor type for the inverter, the user can specify his own characteristic with dr30.

In order to activate this characteristic, value 5: user definition must be set in dr33 motor temp sensor typ.

Index	Id-Text	Name	Function
0x221E	dr30	user drive temp. sensor def.	Parameter structure for the definition of a customer-specific characteristic for detection of the motor temperature

ID-Text	Sub Idx	Name	Function
	132	temp value1 temp value 32	32 temperature values to define the application-specific resistance characteristic of the motor temperature sensor. Presetting in °C
	33	R min	Minimum resistance value of the sensor characteristic (in ohm) => resistance, which belongs to the temperature preset in temp value 1
dr30	34	R max	Maximum resistance value of the sensor characteristic (in ohm) => resistance, which belongs to the temperature preset in temp value 32
	35	short circuit level	Resistance value (in ohm) which displays "short circuit" in ru28
	36	no connection level	Resistance in ohm which displays "no connection" in ru28
	37	act. calculated resistance	Actual calculated resistance of the sensor
	38	Rv	Display of the series resistor of the evaluation circuit (to calculate the sensor current: voltage of the measuring circuit approx. 4.7V, here series resistor 1K91 Ohm).

The user-specific characteristic is defined with sub indices 1 to 34. It consists of 32 pairs of values: resistance value of the sensor and associated temperature.

The internal table of the resistance values range from R \min (subindex 33) to R \max (subindex 34) in 32 equidistant steps.

The corresponding temperatures can be calculated with an EXCEL table if the sensor characteristic can be mapped by the trend line. The trend line function is used

to calculate the temperature values that must be entered in subindex 1 (temp value 1) to subindex 32 (temp value 32).

If the defined characteristic range is left, the display of the motor temperature in ru28 remains set at the final values of the characteristic (temp value 1 or temp value 32, until the resistance value short circuit level falls below (display changes to "short circuit") or the resistance value no connection level is exceeded (display changes to "no connection").

The calculated resistance value of the temperature sensor is displayed in subindex 37 actual calculated resistance. By way the user can check the characteristic definition.

The series resistor of the evaluation circuit is displayed in subindex 38 Rv, since the inverter does not provide a constant current source. This allows the user to estimate if self-heating of the sensor can falsify the measurement.

The following values must be defined for the calculation of the setting of dr30 by the EXCEL file:

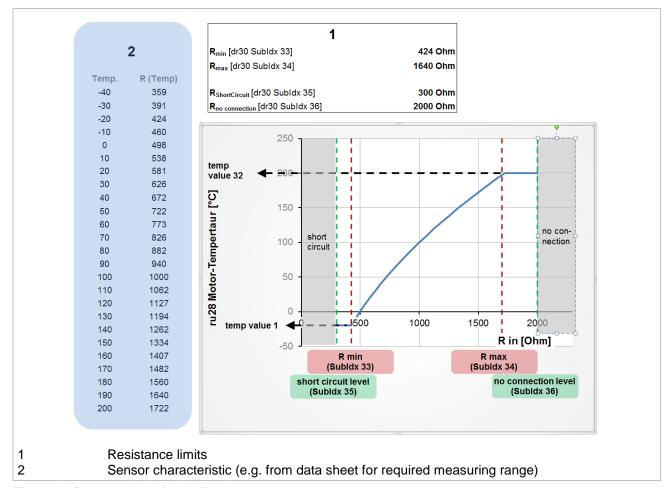


Figure 10: Sensor calculation by Excel

Since not all sensor characteristic curves can be emulated by a corresponding trend line, it must be checked whether the trend line mapps the characteristic curve with sufficient accuracy.

4.4.6 Motor protection switch OH2

4.4.6.1 Asynchronous motor

Index	Id-Text	Name	Function
0x2222	dr34	motorprotection curr. %	Rated current of the motor protection function (in % dr03)
0x2227	dr39	ASM prot mode	Selection of self-ventilated / forced-ventilated motor

dr39	ASM prot mode		0x2227
Value	Name	Note	
0	separate cooling Adjustment for separate-cooled motor		
1	self cooling	Adjustment for self-cooled motor	

The motor protection function protects the connected motor against thermal destruction caused through high currents.

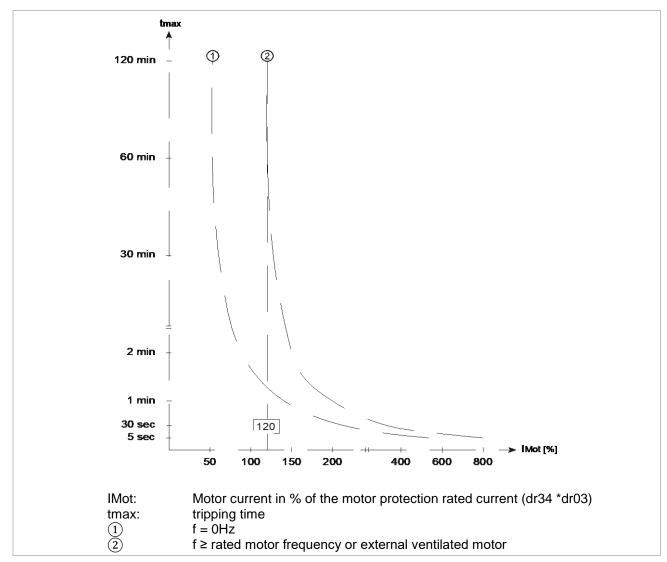
The function corresponds essentially to the mechanical motor protection components, whereby the influence of the motor speed to the cooling of the motor is additionally considered.

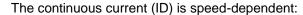
The load of the motor is calculated from the measured apparent current (ru10) and the adjusted motor protection rated current In (dr34motorprotection curr. %).

The following tripping times are valid for a separate cooled motor or at rated frequency of a self-cooled motor:			
1.2 • In => 2 hours	1.5 • In => 2 minutes	2 • In => 1 minute	8 • In => 5 seconds

The tripping time decreases for self-cooled motors with the frequency of the motor. The motor protection function works integrating, i.e. times with overload of the motor are added, times with underload are subtracted.

After triggering of the motor protection function the new triggering time reduces, unless the motor was not operated for corresponding time with underload.




Figure 11: Tripping motor protection switch

4.4.6.2 Synchronous motor

Index	Id-Text	Name	Function
0x2203	dr03	rated current	Rated motor current (in A)
0x220C	dr12	max. current %	Maximum permissible motor current (in % dr03)
0x2222	dr34	motorprotection current %	Standstill current (in % dr03)
0x2223	dr35	SM prot. time min. Is/Id	Tripping time at the min. response threshold
0x2224	dr36	SM prot. Time Imax	Tripping time at maximum current
0x2225	dr37	SM prot. recovery time	Recovery time of the motor
0x2226	dr38	SM prot. min. ls/ld	Min. response threshold of the motor protection function

The motor protection function is dependent on the actual speed (n), the actual apparent current (ls), the maximum current and the motor protection parameters (dr34...dr38).

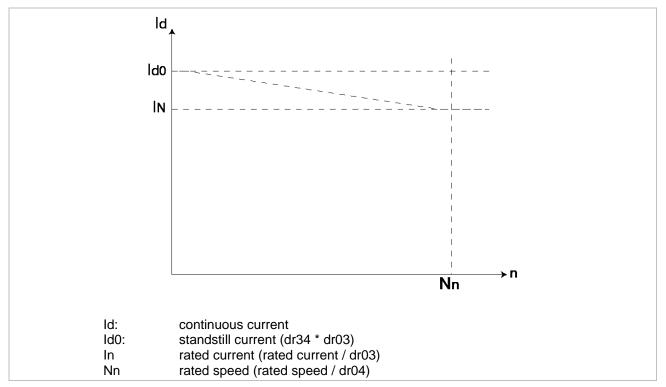


Figure 12: Dependence of the motor protection function

The tripping time (ta) is determined by the ratio Is/Id:

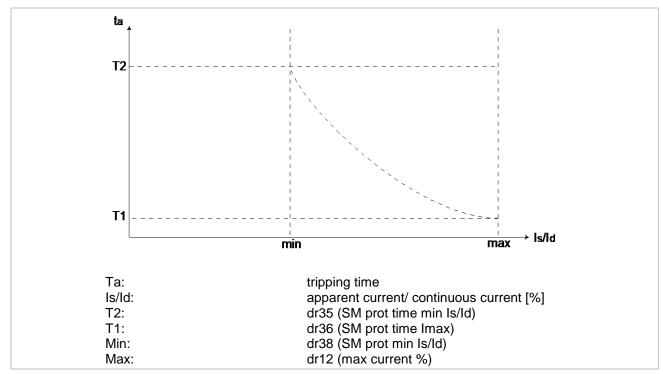


Figure 13: Dependence of the tripping time

Only if the ratio Is/Id is higher than the response threshold of the motor protection function (dr38 SM prot. min. Is/Id) the tripping time (ta) expires.

The tripping time at minimum threshold current is dr35 SM prot.time min. Is/Id and at maximum current (dr12) dr36 SM prot.time Imax.

A counter is increased. Error "ERROR OH2" is triggered if the counter reaches 100%.

If the ratio Is/Id < dr38, the counter is decreased with a factor defined by the recovery time (dr37SM prot. recovery time). The prot.recovery time is the time, which the counter needs to count from 100% to 0%.

The triggered error by the motor protection function can be reset at 98%.

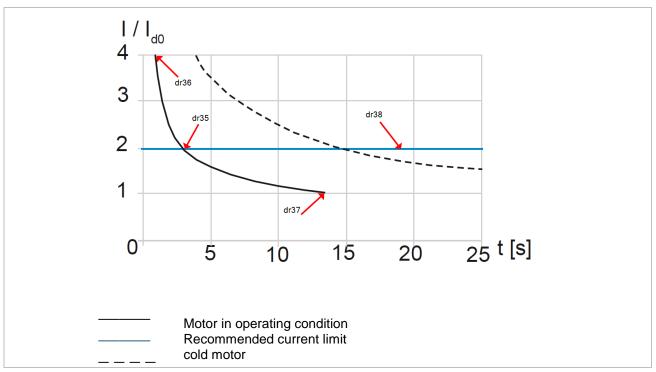


Figure 14: Determination of the motor protection function data from the characteristics of the motor manufacturer

4.4.7 Fieldbus watchdog

Independent on the control the drive can be stopped with the function fieldbus watchdog when the communication is interrupted.

The function can be parameterized via the following objects:

Index	Id-Text	Name	Function
0x2A15	pn21	fieldbus watchdog time	Max. period of the communication interruption (0 = off)
0x2A16	pn22	E.fb watchdog stop mode	Error reaction (=> see Chapter 4.3.1 Errors)
0x2C02	ru02	warning bits	Display of the warnings bit-coded (=> 4.3.3 Warnings)
0x2A1C	pn28	warning mask	Mask for warning bit in the status word (=> 4.3.3 Warnings)

The watchdog function is in state Ready after switching on or after reset of a watchdog error. That means one is waiting for the first communication process to activate the watchdog.

The internal timer starts with the activation. The timer is reset upon entering a process write data process.

If no processs writa data process occurs for a period longer than the time set in pn21 fieldbus watchdog time, the appropriate bit is set in the warning state and with programming of pn22 E.fb watchdog stop mode the watchdog error is triggered.

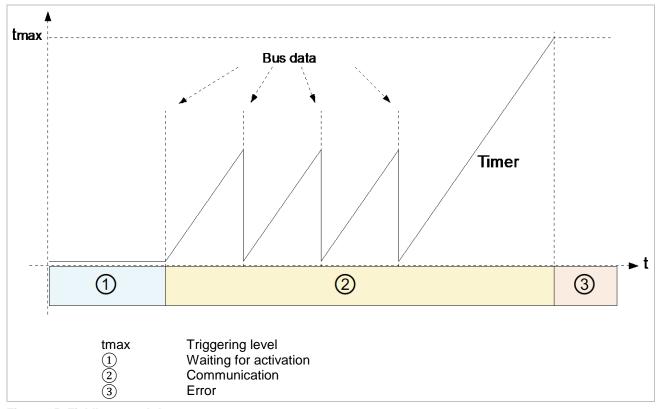


Figure 15: Fieldbus watchdog

4.4.8 Maximum current

Index	Id-Text	Name	Function
0x2203	dr03	rated current	Rated motor current
0x220D	dr12	max. current %	Maximum permissible motor current (in % dr03)
0x201C	de28	inverter rated current	Inverter rated current
0x201D	de29	inverter maximum current	Inverter maximum current (only software limiting)
0x350B	is11	max. current [de28%]	Maximum permissible inverter current (in % de28)
0x3523	is35	set current limit	Software current limit in % turn-off current (OC current) of the device. Resolution 0.01%

The maximum apparent current (not for v/f operation) can be preset via parameters is35 set current limit, dr12 max. current % and is11 max. current [de28%].

de28 inverter rated current and de29 inverter maximum current are only display parameters and they display the inverter rated current and the maximum current of the inverter. Due to e.g. insufficient cooling, it may be necessary to limit the maximum inverter current additionally with is11 to prevent OH errors.

The maximum permissible motor current can be adjusted in dr12 max. current %. The effective current limitation is the lower value of is11 and dr12.

The maximum current of the drive (de29) is always determined as fixed upper limit.

This value is determined by is35 set current limit.

The setting range is 50.00% to 95.00% of the hardware-related turn-off current of the inverter.

NOTICE

The default value of the software current limit is 83.33% of the typical turn-off current to ensure safe operation. The displayed current is always only an average value during a power module cycle. The superimposed current ripple dependent on the motor, which is not visible in the current display, can trigger the overcurrent cut-off, although the display value of the current is clearly below the turn-off current. The specified switch-off current threshold is a typical, tolerance affected value. If the software current limit is higher than the default value, the design must be checked to prevent sporadic overcurrent cut-offs.

Parameter is35 is a Power-On Parameter. i.e. a change of the value is only
effective after restart.

Limitations can be considered separately by the inverter or the motor with dr12 and is11.

Example:

The motor parameter (dr12) also serves to the definition of the saturation characteristic, except for the limitation of the current (=> chapter 6.2.12 Saturation characteristic (SM) Parameter ms00). This value may not be changed in some applications.

Here it may be useful to limit the maximum current via is11.

4.4.9 Effective motor load

Index	Id-Text	Name	Function	
0x2C39	ru57	eff. motor load	mean effective motor load in 0.1% resolution	
0x2A11	pn17	eff load time	PT1 time for effective motor load	

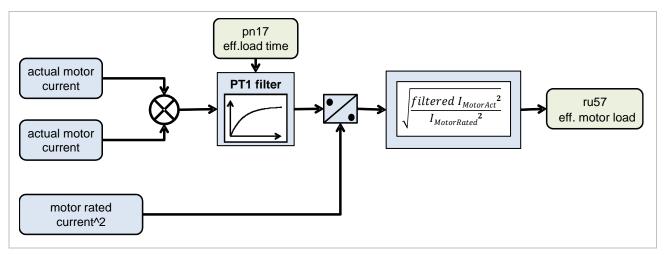


Figure 16: Effective motor load

pn17	eff load time 0x2A11	
Value	Function	
0.01300.00s	PT1 filter time	

ru57 eff. motor load is a pure information parameter, no fault response can be deducted.

The time to reach the final value of the function is a multiple PT1 time because of the root function. Trends for the effective motor utilization can be estimated quickly.

The display area for the effective utilization is limited to max. 8-fold rated motor current. If the actual motor current exceeds this value, the result behind the PT1 filter is limited. Short peaks in the motor current are detected and evaluated, only the effective utilization is limited.

4.4.10 Maximum acceleration or deceleration

Index	Id-Text	Name	Function
0x2A24	pn36	max acc/dec level [s-2]	Maximum acceleration / deceleration value
0x2A25	pn37	E.max acc/dec stop mode	Error reaction (=> see Chapter 4.3.1 Errors)

The maximum acceleration or deceleration can be monitored for all operating modes. The level in pn36 is normalized (in [s-2]) as well as the ramps.

The acceleration is additionally limited to the value in pn36 in operating modes with interpolator (8, 9, 10).

Thereby errors of the superior control can be compensated. Additionally an error reaction should be activated in pn37.

4.4.11 Monitor the speed difference

Index	Id-Text	Name	Function
0x2A26	pn38	speed difference level	Speed difference in % rated motor speed
0x2A27	pn39	speed difference time	Error is triggered if the time of the speed difference is longer than pn39
0x2A28	pn40	speed difference stop mode	Error reaction (=> see Chapter 4.3.1 Errors)
0x2A29	pn41	speed difference calculation mode	Selection which value shall be taken as reference value for the speed difference calculation.

Monitoring of the difference between the set speed (defined via pn41) and the actual speed.

By way it can be monitored e.g. whether the drive can follow a setpoint in the correct manner.

This can prevent e.g "overspeed" of a synchronous motor with wrong system position, if the pn39 speed difference time is selected sufficiently small.

pn41	speed difference calculation mode		
Valu e	Name	Note	
0	ru84ru08	Setpoint speed before ramp ru84 reference speed	
1	ramp output - ru08	Setpoint speed after ramp	
2	ramp out after cs19 - ru08	Setpoint speed after ramp and smoothing by the PT1 filter	
3	ru06ru08	Speed controller setpoint (ramp output smoothed via PT1 fi sition controller access)	lter + po-

The signal (error/warning) is reset immediately when the speed deviation is no longer present. Additionally the internal response time of the monitoring is set to zero during reset, so the response time is reduced after short deactivation of the signal. As long as the signal remains inactive, the internal response time is increased until it reaches the full value again (equal to the value parameterized in pn39) after pn39 speed difference time has elapsed.

4.4.12 External error / warning triggering

Index	Id-Text	Name	Function
0x2A1D	pn29	prg. error stop mode	Error reaction (=> see Chapter 4.3.1 Errors)
0x2A1E	pn30	prg. error source	Selection of the inputs or events which trigger the error

Errors or warnings can also be triggered by external events. Different sources can be selected via pn30.

The meaning of the single bits in pn30 prg. error source is defined as follows:

pn30	pn30		prg. error source 0x2A1E		
Bit	Value	Name	Function		
0	1	I 1	Input I1 triggers an error		
1	2	12	Input I2 triggers an error		
2	4	13	Input I3 triggers an error		
3	8	14	Input I4 triggers an error		
4	16	15	Input I5 triggers an error		
5	32	16	Input I6 triggers an error		
6	64	17	Input I7 triggers an error		
7	128	18	Input I8 triggers an error		
8	256	IA	Input IA triggers an error		
9	512	ΙB	Input IB triggers an error		
10	1024	C	Input IC triggers an error		
11	2048	ID	Input ID triggers an error		
121 5			Reserved		

4.4.13 Safety Stop from safety module

Index	Id-Text	Name	Function
			Error reaction (=> see Chapter 4.3.1 Errors)
0x2A50	pn80	safety stopping func- tion	On devices with safety module type 3 or higher, the SS1 or SS2 function can directly execute the reaction set in pn80.
			See also the instruction manual of the safety module.

1111	Error underpotential	(IID / Dilroady)
4.4.14	Error underbotential	(UP / Puready)

Index	Id-Text	Name	Function
0x2020	de32	inverter minimum DC voltage	Default value to trigger the undervoltage error
0x3512	is18	UP error level	Tripping level for the UP error
0x3513	is19	UP reset level	Reset level fo the UP error
0x2A4C	pn76	UP2 delay time	Delay time of error triggering of UP2
0x2A4D	pn77	E.UP2 stopping mode	Response to the UP2 error
0x2A53	pn83	auto-retry activation	Activation of an automatic error reset
0x2A54	pn84[1]	auto-retry UP time	Time limit of the automatic error reset
0x2A54	pn84[2]	fault suppression mode	Activation of a reducted precharge time
0x2A54	pn84[3]	auto retry UP acceleration	Activation of an alternative ramp after Auto-Retry UP/PUready

4.4.14.1 Precharging of the DC link

If the DC link voltage falls below the UP threshold, the circuit for the current-limited precharging of the DC link is activated.

Below the UP threshold, the switching power supplies connected to the high voltage also become inactive. This triggers error 123: ERROR PUready. Since the UP level is fallen below when the voltage is switched off before the switching power supplies become inactive, error "ERROR PUready" is normally never visible to the outside.

"5: phase failure" is displayed in parameter ru04 supply unit state.

Precharging occurs via precharging resistors, which are bridged after completion of precharging either via a relay (case size 2) or input thyristors.

The difference between the DC link voltage and the mains input voltage is monitored from housing size 4.

The power unit ready signal is only set when the high-voltage supplied power units are in operation and the voltage difference monitoring also sends the "ready" signal

When the power unit ready signal is applied and the UP reset threshold is exceeded, the precharge time implemented in the software **also** elapses. After this time, the precharging circuit is deactivated again and the state of parameter ru04 supply unit state changes to "4: run".

The time until the UP reset threshold is reached or the power unit ready signal is set is only defined by the hardware (temperature-dependent precharging resistors). If the error was triggered by a short power failure, the restart time can be optimized by reducing the software waiting time. For this, bit 2 "reduced charging" must be activated in pn84[2] fault supression mode.

pn84[2]	fault suppression m	0x2A54 [2]	
Bit	Plaintext Note		
1	4: reduced charg- ing	The reduced charging time is activated with Auto (For a description of the function, see chapter 4.3. reset UP)	•

This reduced charging time is only selectable for Auto-Retry UP / LTready.

4.4.14.2 Reduction of the charging currents

The two levels for the UP and the UP reset threshold are preset according to the power unit.

In case of short voltage dips where the inverter is not / only slightly loaded (e.g. modulation off or motor in no-load operation), the dip in the DC link voltage may be so small that the precharge circuit is not reactivated.

If the power recovery occurs in this state, there can be extremely high currents in the DC link.

These currents can only be reduced / avoided if the voltage level at which error UP is triggered or precharge is activated is increased.

This is possible with is18 UP error level and is19 UP reset level.

Since internal switching power supplies depend on the DC link voltage, the UP threshold can only be lowered slightly.

NOTICE

Between is18 UP error level and is19 UP reset level must always be at a sufficient distance (for 400V devices at least 60V).

4.4.14.3 Error triggering

Only if the DC link voltage falls below the value of is18 during activated modulation, error "6: ERROR underpotential" (display in ru01) is triggered. The same applies to error 123: ERROR PUready (power unit ready - signal inactive)

Otherwise, only ru04 supply unit state changes back to the state "5: phase failure" and the state machine cannot be beyond state "2: switch on disable" (st12 state machine display).

If a low DC link voltage also shall trigger an error, if the modulation is not released can be parameterized by pn77 E.UP2 stopping mode.

Function with programming of pn77 to 0: fault": an undervoltage error is triggered if ST is set and after waiting for the delay time (pn 76 E.UP2 delay time) ru04 supply unit state has not reached the state "4: run".

The software ST (Bit 0 and 1 of co31 internal control word) and the state of the STO inputs is considered as ST.

4.4.14.4 Optimized restart time

4.4.14.4.1 Overview of necessary parameterization

In order to return the motor to "normal operation" as quickly as possible after an error UP or error LT ready, without the need for intervention by the control, the following settings must be made:

- Activation auto-retry: pn83 = 1: auto retry UP / PUready (see chapter 4.3.2.2 Automatic fault reset UP)

 The auto retry (auto reset) does **not** generate an edge in the "enable operation" bit of the control word. An automatic return into the state "operation enabled" without intervention of an external control is only possible if the value "0:state" is selected in co32 state machine properties for "enable operation mode".
- Activation of reduced minimum switch-off times after auto-retry: pn85 customer time usage 1: at auto retry. (Other settings are also possible, e.g. 3: at auto retry + at low speed, description see chapter 4.4.21.2 Configuration of the minimum switch-off time)
- Activation of the reduced precharge time at auto-retry UP Setting of pn84[2] fault supression mode Bit 2 "reduced charging"

4.4.14.4.2 Reduced ramp to optimize the start-up time

If long acceleration ramps are parameterized for the "normal" start-up of the drive, these may be too long for the restart after a mains voltage failure.

Therefore, a separate ramp time can be programmed for this case in pn84[3] auto retry UP acceleration [s-2].

The alternative ramp is always a linear ramp.

Index	Subidx	Id-Text	Name	Function
0x2A54	2	pn84	auto retry UP accel-	Linear acceleration / deceleration for all directions
UXZA34	3	p1104	eration for [s-2]	of rotation

The alternative ramp for optimized restart becomes active when:

- the drive is operated in velocity mode
- AutoRetry UP/PUready with time limit (pn84[1] unequal zero) was performed (see 4.3.2.2 Automatic fault reset UP)
- the "Fault suppression mode" in pn84[2] is activated
- bit 3 "enable operation" and bit 0 "switch on" in the controlword remain set or are set again during the restart time. (The test is only performed in the slow interrupt => 6.2.20 Interrupt structure of the software)

Removing bit 1 "enable voltage" has no effect on resetting the function.

After bit 1 is set again, the fast ramp is used for the first acceleration after any time. However, if bit 0 or bit 3 is also set to zero when the restart is carried out, the alternative ramp is also deactivated.

This alternative ramp only applies to the first acceleration process after AutoRetry UP/PUready.

When the setpoint is reached, the standard ramp becomes active again.

If the setpoint speed at the start of the alternative ramp is zero, the standard ramp is also reactivated

pn84[3]	auto retry UP acceleration for [s-2]		0x2A54 Subldx 3
Value	Plaintext Function		
0	0: off	no alternative ramp	
0 1747626666	0,00 17476266,66 Definition of the alternative ramp		

4.4.15 Overvoltage

The modulation is switched off with ERROR overpotential if (e.g.) in regenerative operation the DC link of the inverter is charged too high by regeneration with too fast ramp.

Regeneration is completed by deactivation and the inverter is protected.

One exception is (e.g.) excessively high charge of the DC link, which can occur due to the EMF at high speed of a synchronous motor or voltage increase in an asynchronous motor with preconnected filter.

If in these cases the DC link voltage is not limited to the "overpotential" value, ER-ROR extreme overpotential is triggered with exceeding the next voltage limit.

Voltage class	Tripping level ERROR overpotential	Tripping level Error extreme overpotential
230 V	400 V	470 V
400 V	840 V	940 V
690 V	1200 V	1410 V

Table 4-1: Overvoltage level

This error can only be reset after 60 seconds. In order to prevent additional energy supply from the mains side, the inrush current limiting is reactivated, if the technology of the inverter allows it.

If a voltage exceeds the "extreme overpotential" value for a longer time, it is assumed that the DC link capacitors are damaged and the inverter shall be made subject to a service.

The error display changes to "ERROR capacitor damaged" and the device can not be put into operation.

The internal switching power supplies are activated at mains voltage supply, but the starting current limiting remains active and the inverter remains in "ERROR capacitor damaged".

This error is reset only with an overhaul by the service.

The following table shows the temporal connection between the duration of the overvoltage and "ERROR capacitor damaged"

	DC voltage [V]	Permanent damage after	
230V	400V	690V	
470	940	1410	5 seconds
475	950	1425	5 seconds
480	960	1440	5 seconds
485	970	1455	1.48 seconds
490	980	1470	625 ms
495	990	1485	320 ms
500	1000	1500	185 ms
505	1010	1515	117 ms

Table 4-2: Permanent damage due to overvoltage

4.4.16 Overspeed (ERROR overspeed / ERROR overspeed (EMF))

Index	Id-Text	Name	Note
0x2A1B	pn26	overspeed level	Tripping level ERROR overspeed in % rated speed
0x2A1C	pn27	E.overspeed stop mode	Error reaction (=> see Chapter 4.3.1 Errors)
0x2A46	pn70	overspeed factor (EMF)	Tripping level ERROR overspeed (EMF)
0x2A47	pn71	E. overspeed EMF) st. mode	Error reaction (=> see Chapter 4.3.1 Errors)
0x2A48	pn72	overspeed level (EMF)	Tripping level ERROR overspeed (EMF) in rpm

There are 2 functions for overspeed protection (pn26 / pn27 and pn70...pn72).

- An application-specific speed limit can be set with pn26. If the level is set to 0 "off", the protection function is out of order.
- It is calculated from the value of the EMF at which speed the regenerative voltage of the synchronous machine reaches a value which damage the capacitors in the inverter DC link. The safety difference to this limit is preset with pn70 overspeed factor (EMF). A value of 90% for pn70 means, the error is triggered at 90% of the max. theoretically permissible speed value. The level when the error is triggered is displayed in pn72 overspeed level (EMF).

$$pn72 = \frac{OPLevel}{dr14}*\frac{pn70}{100\%}*1000*rpm$$

The response to the error is defined with pn71 E. overspeed (EMF) st. mode.

NOTICE

These errors are only triggered when the modulation is switched on.

4.4.17 Encoder monitoring

The drive can be stopped independent of the control with the function encoder monitoring when the speed measurement fails.

The function can be parameterized via the following objects:

Index	Id-Text	Name	Function
0x2A22	pn34	E.encoder A stop mode	Error reaction (=> see Chapter 4.3.1 Errors)
0x2A23	pn35	E. encoder B stop mode	Error reaction (=> see Chapter 4.3.1 Errors)
0x2C02	ru02	warning state	Display of the warnings bit-coded (=> 4.3.3 Warnings)
0x2A1C	pn28	warning mask	Mask for warning bit in the status word (=> 4.3.3 Warnings)

If an encoder is adjusted for the appropriate channel (ec16 encoder type or ec16 encoder type B unequal 0), the parameterized error response (e.g. warning or error reaction ramp) is triggered as soon as the speed measurement is no longer possible without error. (i.e. as soon as the encoder interface indicates an error in ec00).

Since channel A is used as standard for speed and position control, the default value for pn34 E. encoder A stop mode is 0 "fault (92: ERROR encoder A" is triggered) and for pn35 E. encoder B stop mode 7 "off" (no response).

If a control mode is selected which requires an encoder (cs00 control mode = 1 "encoder without model" or 2 "encoder, with model") an error is always triggered, even if value 7 "off" is selected in the encoder monitoring. Then the error type is 96 "encoder missing". When the encoder monitoring is switched off (or programming only to warning), it can only be reached, that the drive in operating modes which do not require an encoder, do not change into malfunction. This allows eventually an emergency operation.

4.4.18 Limit switch

Limit switches are used to detect a certain position, whereupon a defined reaction is carried out.

4.4.18.1 Software limit switch

Index	Id-Text	Name	Function
0x2A12	pn18	sw switch limit left	Software position limite
0x2A13	pn19	sw switch limit right	Software position limits
0x2A14	pn20	E.SW-switch stop mode	Error reaction (=> see Chapter 4.3.1 Errors)
0x3110	hm16	Excluded modes of operation for software limits	Operating modes in which the software limit switches are not active

If st33 position actual value exceeds the software position limits while a speed is preset in the appropriate direction, the parameterised error response is triggered.

4.4.18.2 Hardware limit switch

Index	Id-Text	Name	Function
0x3106	hm06	negative limit switch source	Selection of digital inputs for the negative and posi-
0x3107	hm07	positive limit switch source	tive limit switch (=> also chapter 7.1 Digital Inputs; no STO inputs)
0x310F	hm15	excluded modes of operation for limit switch	Operating modes in which the limit switches are not active
0x3111	hm17	limit switch handling	Selection of limit switch tripping conditions
0x3112	hm18	limit switch speed level	Speed level in % rated motor speed from which evaluation of the actual direction of rotation is active
0x2A4E	pn78	limit switch forward stop mode	Selection of the error reaction when the limit switch
0x2A4F	pn79	limit switch reverse stop mode	is reached (=> also chapter 4.3.1 Errors)

If no input is assigned to a limit switch in parameters hm06 / hm07 but a reaction is defined in parameters pn78 / pn79, this reaction is always triggered because the limit switches are 0-active.

If a quickstop reaction is selected in parameters pn78 / pn79, quickstop must be activated in co32, otherwise there is no reaction. The quickstop reaction can be defined via the "quickstop option code".

hm15	exclude	excluded modes of operation for limit switch			
Bit	Value	Name Function			
015	0	no mode of operation	Hardware limit switches are always	active	
0	1	profile positioning mode			
1	2	velocity mode			
2	4	homing mode (not available)			
3	8	cyclic sync positioning mode			
4	16	cyclic sync velocity mode	I I I I I I I I I I I I I I I I I I I		
5	32	cyclic sync torque mode			
615		reserved	reserved for future modes of operation	tion	

hm17	limit sw	vitch handling	0x3111
Bit	Value	Plaintext I	Function
limit swit	ch active	mode	
	0	standard	Standard Input: The limit switch signal is active as long as the selected input is active (= zero).
02	1	hold status	In the event that a limit switch has been passed, the limit switch should remain logically active. The position at detection of the limit switch signal is stored. By way that the signal "limit switch positive" is removed again, the input must become inactive again and the position (st33) must be smaller than the position of the activation edge. The same applies to the signal "limit switch negative".
	37		reserved
limit swit	ch deper	ndence	
	0	only input	Limit switch is evaluated independently of the direction of rotation
	8	only refer- ence speed	Limit switch is only evaluated depending on the set direction of rotation (ru84)
35	16	reference and actual speed	The limit switch is evaluated depending on the set direction of rotation (ru84 and the actual direction of rotation (ru08) (OR linking). The evaluation of the actual direction of rotation becomes only active above the speed level (hm18).
	24	fault at actual speed	Function as for value 16, but additionally: if it is detected that only the actual direction of rotation is in the direction of the limit switch, the "FAULT" reaction is always triggered.
	32		reserved
reserved		1	
6,7	64 192		reserved

The digital inputs of the hardware limit switches can be selected via parameters hm06/hm07. A signal is applied to them until they are approached (0-active). With parameter hm15 can be adjusted whether the limit switches should have no function in an operating mode. The homing mode is deactivated at the factory because it resets the positions of the system and therefore no position-dependent limit switch evaluation can be done. The tripping conditions for a limit switch must be set via parameter hm17 (default value = 8). It should be noted that in two modes (16, 24) parameter hm18 (default value = 0%) must also be set by way that the detection of the actual speed becomes active.

The reaction when the limit switch is reached is set via parameters pn78 and pn79. If "Warning" or "Ignore" are not selected as limit switch reaction, reaching the limit

switch always finishs the active positioning. Thus, the set position is set to the value of the actual position and a new "Start Positioning" command is required. If index positioning is configured, the start index is restarted.

If the positive and negative limit switches are active simultaneously (both supply a 0 signal), always the fault reaction is triggered and an error is output. This should guarantee the protection of the operated system in case of defective and jammed limit switches. A reset of the error is possible as soon as the defect at the limit switch has been remedied and **both** switches are released again.

If a power-on reset is performed, the parameter settings are retained, but temporary limit switch data, such as the position when the limit switch is activated or the hold status, are reset. Therefore the position of the system must be checked before restarting after a power-on reset.

All reactions to the limit switch, except immediate switch-off, require that the control (with encoder / ASCL or SCL) is still functional.

In case of a defect of individual power modules, current detection or voltage measurement, a wrong system position, the set and actual position (estimated or measured) can deviate from each other.

Then only switching off the modulation can protect the drive.

Index	Id-Text	Name	Function
0x3113	hm19	maximal forward limit switch override	Setting the max. difference between the position when detecting the limit switch signal and the cur-
0x3114	hm20	maximal reverse limit switch override	rent actual position (st33). Value "0" deactivates the function. The "limit switch active mode" has no effect on this function.

If a "Stop" mode is selected as reaction to the limit switch, a maximum difference between the position when detecting the limit switch signal and the current actual position (st33) can be parameterized with hm19/hm20 maximal forward/reverse limit switchoverride. If this difference is exceeded (e.g. due to a shutdown ramp that is too slow), the drive switches to "ERROR override forward" or "ERROR override reverse". This error can only be detected if the modulation is still active. It can be reset when the modulation is deactivated.

If this function is used, no homing should be carried out during operation. This would reset/change the positions and the override function could not work properly.

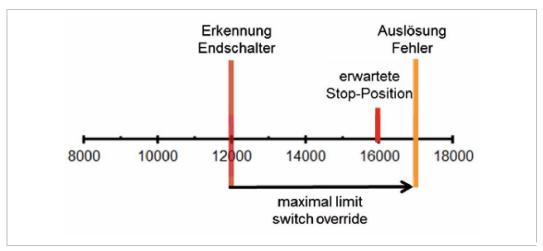


Figure 17: Limit switch

4.4.19 Input phases failure detection

Index	Id-Text	Name	Function
0x2A2A	pn42	E.Uph stop mode	Error reaction (=> see Chapter 4.3.1 Errors)

There are two internal functions which monitor the DC link voltage in order to avoid a premature ageing of the capacitors.

E.Uph is triggered, if the ripple of ru14 exceeds 10 times within 16 ms a power unitdependent value (typically 120V at 400V devices).

The second function is only active with 3-phase inverters. This function monitors the ripple of the DC link within a certain frequency range. E.Uph can also be triggered if the frequency of the fluctuation of ru14 indicates that an input phase is missing.

Since a ripple of the DC link voltage can also be triggered by the application (load cycle or oscillations of the controller), the more sensitive, frequency-dependent monitoring function can be switched off with pn42 or it can be used only as warning function.

4.4.20 Power off function

The status "Power off active" is reached when the event "Mains power failure detected" occurs:

- The DC link voltage drops below a preset level.
- Currently no further starting conditions.

If a mains power failure is detected, the following reaction may occur:

- The energy stored in the drive, is used to maintain the DC link. The DC link is controlled to a constant DC link voltage.
- The drive is brought to a standstill at a constant torque limit.

4.4.20.1 Function description

4.4.20.1.1 Function and power flow in the CDM

During operation of a CDM, the mains AC voltage is converted into DC voltage by the input rectifier and by way a DC link is kept at a constant voltage level. This DC voltage is converted by the output inverter into AC voltage which supplies the connected motor.

4.4.20.1.1.1 Motor operation

During motor operation, power is taken from the mains and converted into movement in the motor. The DC link voltage remains constant in this operating state, no energy is converted into heat in the braking resistor.

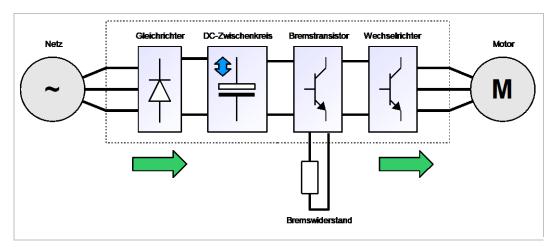


Figure 18: Motor operation

4.4.20.1.1.2 Regenerative operation

In regenerative operation, mechanical energy of the motor is converted into electrical energy in the DC link. A power flow back into the mains is not possible via the rectifier. Therefore, the voltage in the DC link increases and on exceeding the tripping voltage, the energy in the braking resistor is converted into heat. If no braking resistor is connected, the CDM switches off with overvoltage error.

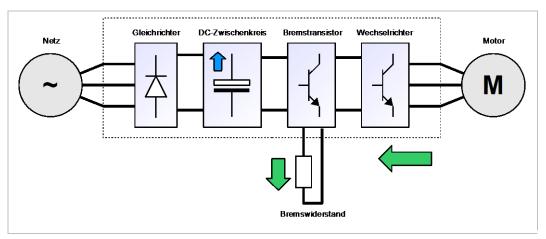


Figure 19: Regenerative operation

4.4.20.1.2 Behavior in case of mains power failure without activated power-off function

4.4.20.1.2.1 Motor operation

If the mains fails during motor operation, energy is still taken from the DC link. Since the DC link is no longer recharged from the mains, the DC link voltage drops. If the undervoltage limit is undercut, the CDM switches off with undervoltage error. The connected motor coasts down.

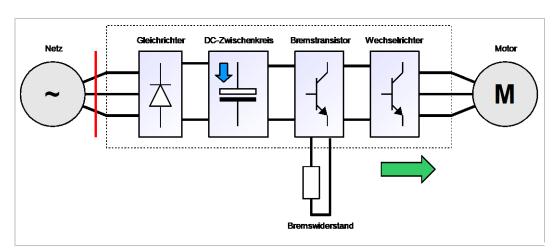


Figure 20: Motor operation without power-off function

4.4.20.1.2.2 Regenerative operation

In regenerative operation, a mains power failure will have no effect.

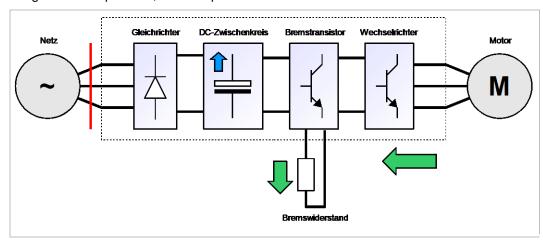


Figure 21: Regenerative operation in case of mains power failure

4.4.20.1.3 Behavior in case of mains power failure with activated power-off function

4.4.20.1.3.1 Control to constant DC link voltage

If a mains power failure is detected, the power flow to the motor is interrupted and the motor is brought into regenerative operation. The power fed back into the DC link is controlled in such a way that the DC link voltage is kept at the selected setpoint. By way, external loads connected to the DC bus can be supplied with constant voltage. If the power fed back by the motor is not sufficient to cover the power requirements of the external loads, the DC link voltage will drop and switch off the CDM with undervoltage error.

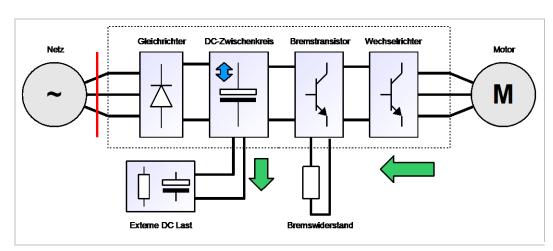


Figure 22: Control to constant DC link voltage

The deceleration of the motor results from the energy stored in the rotating masses of the motor and the power requirement of the external DC loads.

4.4.20.1.3.2 Control to constant torque

If a mains power failure is detected, the power flow to the motor is interrupted and the motor is brought into regenerative operation. The power fed back into the DC link is determined by the specified braking torque. In this operating mode, the DC link voltage increases continuously up to the tripping level of the braking transistor. If no braking resistor is used, the DC link voltage increases up to the overvoltage level.

The control to constant torque is used in applications where the drive shall be shutdown as quickly as possible when a mains power failure is detected.

In the operating mode - control to constant torque - a braking resistor or an external braking module must be used to limit the DC link voltage.

4.4.20.2 Restrictions due to the control model

The power-off function can be used in the following modes:

cs00	control mo	control mode				
Bit	Function	Valu e	Plaintext	Notes	Power Off	
		0	uf-control	Voltage-/frequency characteristic even with activated power-off function no change into the state "Power-Off active"		
03	control	1	encoder, with- out model	Operation with encoder without motor model	х	
03	mode	2	encoder, with model	Operation with encoder and motor model	х	
		3	no encoder (ASCL/SCL)	PowerOff Uic-Ctrl only works in speed ranges where the motor model is also activated (ds41).	Х	

4.4.20.3 System recovery

There are two options for system recovery:

- the restart speed was not fallen below, then the drive can be operated again
- when it has left the "operational enable" state. The stopping level is irrelevant here.
- The restart speed was fallen below, starting from the stopping level, the system switches into speed-controlled operation and decelerates to low speed at the standard ramp (co-group) and the standard torque limit (cs-group).

4.4.20.4 End of power-off function

The deactivation time expires when the setpoint speed NULL is reached in the stopping mode. Afterwards the status changes to "Fault".

4.4.20.5 Parameter description

The mode of operation of the power-off function and the associated objects of the CDM are described in the following.

Index	Id-Text	Name	Function
0x2C3F	ru63	Uic voltage at Power On	The rated DC link voltage is determined after switching on the supply voltage in no-load operation and stored in object ru63. The power failure level is given as a percent value of the rated DC link voltage. This makes it possible to parameterize the function independently of the mains voltage (e.g. 400V or 480V). The power recovery is detected if the DC link is for 50ms higher than (ru63 - 50V).

Index	Id-Text	Name	Function
0x3911	cu17	intermediate capazity [uF]	The entire DC link capacity (including the own)

Index	Туре	IDtxt	Name
3920h	RECORD	cu32	power-off

Subidx	Туре	Name	Function
0	UINT8	number of entries	-
1	UINT8	power off mode	Activation and setting of modes
2	UINT16	DC voltage trigger level [ru63%]	Start level for power off in percentage according to ru63, depending on the DC link voltage.
3	UINT16	DC voltage ref. [ru63%]	DC setpoint, percentage to ru63. If the DC setpoint is set < start level, it is internally limited to the start value, otherwise the DC controller will try to reduce the voltage in the DC link by acceleration at the motor torque limit (see Subldx).
4	UINT16	restart speed level [Nn%]	If the speed is above the restart level at power recovery detection, the CDM returns to "operation enable" if it has been in this state before power off.
5	UINT16	stopping speed level [Nn%]	Below this speed, the CDM changes from DC-Ctrl to Speed Ctrl (target setpoint =0 rpm, ramp values from co48-59). The standard torque limit is applied (cs group). This level must not be below the model shutdown level, otherwise control is no longer possible (ds group).

Subidx	Туре	Name	Function
			The power off function is terminated when the speed setpoint has reached zero and the deactivation time has expired. The status changes to "Fault". The drive will become operational if the following conditions are met:
6	UINT16	deactivation time	DC voltage does not drop below the UP level (-> leads to undervoltage error).
			Restart speed level is set to = 0
			The drive was in state "operational enable" before power off has triggered.
7	UINT8	power off state	Display of the state
10	UINT16	torque limit gen.	regenerative torque limit
			motor torque limit
11	UINT16	torque limit mot.	The motor torque limit should not be set to ZERO. The CDM can either accelerate unintentionally due to system/model errors, or the DC link voltage can increase up to OP error.
12	UINT16	DC-ctrl optimisation factor	The DC controller (PI controller) is designed according to the symmetrical optimum. This factor indicates the hardness of the controller (2=hard15=soft). The DC link capacity (cu17) is used as basis for the calculation.

NOTICE

If the "stopping speed level" is set above the "restart speed level", the energy fed back during shutdown can charge the DC link by way that system recovery is detected or the DC link is overloaded.

Remedy: Equate both levels.

Index	Subidx	IDtxt	Name
3920h	1	cu32	power-off . option code
Bit	Name		Function
0	Activated		0 = Power – Off function deactivated 1 = Power – Off function activated
115	reserved		

Index	Subidx	IdTxt	Name	Name		
3920h	7	cu32	power-off . state			
Bit	Func- tion	Valu e	Plaintext	Note		
0	mains	0	ОК	Assumed mains status OK		
U	ok	1	phase failure	Assumed mains status FALSE		
		0	off	not active		
	power off state	2	active (DC-ctrl)	Active		
13		4	active (DC- ctrl), no auto restart	Active, no auto restart possible		
13		6	stopping	Drive decelerates to ZERO		
		8	stopping, no auto restart	Drive decelerates to ZERO, no auto restart possible		
		10	end, ERROR reset	Power Off expired, error message		
48	re- served					

4.4.20.6 Figure in the drive state machine

Since the power-off function is active while the CDM is decoupled from the setpoint setting, the power-off function is displayed as a separate state in the drive state machine.

A change into the state power-off-active (st00 bit 14 and st12 value 13) can be done from the following states:

- Operation enabled
- Shutdown active
- Disable operation active
- Quickstop active

It is **not** possible to change from "fault reaction active" state to power-off.

When a system recovery is detected, the following state transitions are possible:

- Operation enabled (if the restart speed limit has not fallen below yet)
- Power off active (drive continues deceleration and completes power-off function)

The following state transitions are possible when the power-off function has been terminated:

Fault (after expiry of the deactivation time)

A change to the state "Switch on disabled" can be made at any time using the command "Disable Voltage".

2*pi*0,5Hz ru08 DC controller cu32.10 cu17 cu32.11 ru63 ru63

4.4.20.7 Power off DC link voltage - control structure

Figure 23: Circuit diagram of the DC control (ppz=number of pole pairs)

4.4.20.7.1 Design of the DC link voltage controller

The DC link voltage controller is designed according to the symmetrical optimum.

Tdelay = 1.125ms, e.g. Td = 4*TpBase (see is22 e.g. TpBase = 62.5us)

Tsum = Tdelay + 2*Td , Cuic = cu17, SymOp = cu32.12

$$Kp = \frac{Cuic}{SymOp * Tsum}$$

$$Tn = SymOp^2 * Tsum$$

4.4.20.7.2 Control to constant DC link voltage

When controlling to constant DC link voltage, the speed controller is replaced by a DC link voltage controller. Like the output of the speed controller, the output of the DC link voltage controller is also used as setpoint for the torque, current control loop.

4.4.20.7.3 Control to constant braking torque

Control to constant braking torque is a special case of control to constant DC link voltage.

For this purpose, parameter DC voltage ref must be set to a value that cannot be reached (e.g. 200%). Thus, the Uic controller is driven into the regenerative torque limit. A brake transistor, for example, is required to prevent shutdown due to overvoltage.

4.4.21 Minimum switch-off times

4.4.21.1 Overview of variable minimum switch-off times

A minimum switch-off time is defined for each power unit, which expires in the default setting before the modulation can be reactivated.

If the bit "Enable operation" in the controlword is set to 1 and the time has not yet expired, the state in st12 is set to "12: Mod off pause active".

If the minimum switch-off time of the device has expired, no new edge of "Enable operation" is required, the drive changes automatically into state "Start operation active".

This minimum switch-off time reduces the load for the drive and the application. A motor which is still rotating or a rotor flux that has not yet been reduced can generate undefined torques when switching on again.

In other cases, the minimum switch-off time is unnecessary or interferes with the application, e.g. when the drive has come to a defined standstill.

4.4.21.2 Configuration of the minimum switch-off time

Index	Sub Idx	ld- Text	Name	Function
	1		customer time usage	Use of the variable modulation minimum-off time
0x2A55	2	pn85	customer modulation off time	Setting of the variable modulation minimum switch-off time
0x210C	0	st12	state machine display	Display whether minimum switch-off time is active

Parameter pn85 can be used to configure whether and when the user-defined instead of the default minimum switch-off times from the power unit data shall be used.

Additionally the user-defined time can be preset there.

SubIndex 1 can be used to define when the alternative minimum switch-off time shall be used.

pn85[I] customer tim	e usage	0x2A55 [1]
Bit	Display	Note	
0	1: at auto retry	Use the time from pn85[2] if a restart shall occur after	er auto-retry.
1	2: only at low speed	Use of the time from pn85[2] only if the actual speed ulation deactivation is < 10% of the rated motor spe If the user-defined minimum switch-on time is active changed again until the next switch-on.	ed.
2	4: use always pn85[2]	The time parameterized by the customer is always umum switch-off time. If this bit is set, the other settings have no function.	used as the mini-
3	8: at manual reset	after error reset the time from pn85[2] is used, unles requires a protection time (OC, OL2, OP, OP2). The time is the minimum time that is always observed. If than the protection time, pn85[2] is used.	en the protection

The decired	minimum	switch-off time	can be para	motorizad in	Subladov 2:
The desired	minimum	Switch-on time	can be bara	metenzea m	Submaex 2.

pn85[2]	customer modu	0x2A55 [2]	
Value	Display	Note	
0	PU data value The value from the power unit data is always used		d
11000	0.0110.00 s	Value of the alternative (user-defined) minimum s	switch-off time

The default value of the parameter is 0: PU data value.

4.4.21.3 Increased minimum switch-off time in case of errors

For errors that cause stress to the inverter, hardware-related pauses must be observed independent of the parameterized minimum switch-off time.

These errors are: OC, OP, OP2, OL2

Minimum switch-off time after first error (or after 2 minutes without error) => 50ms

Minimum switch-off time for the next 4 errors within the monitoring interval of 2 minutes: => The value defined in the power unit data for the minimum switch-off time.

A counter increments with each error. The error counter is reset when this error has not occurred for 2 minutes.

In order to avoid frequent repetition of the same error, the release of the modulation is rejected for a longer time if a counter of category (OC, OP / OP2, OL2) reaches the error level 6. The minimum switch-off time changes then to 2 minutes.

Minimum switch-off time for 6 errors within the monitoring interval of 2 minutes: => 2 Minutes

After 2 minutes without error, the device is regarded again as "unloaded" and the short protection time for the initial error becomes effective again.

4.4.21.4 Display minimum switch-off time / protection time active

The protection times after the occurrence of an error and the "standard" minimum switch-off time have the same effect: they prevent the activation of the modulation.

If it is tried to set the drive into the state "operation enabled" while the minimum switch-off time is still running, the drive is set to "Mod off pause active" instead.

If it is tried to set the drive into the state "operation enabled" while the protection time is still running, this is also prevented by the status.

st12	state machine display		0x210C
Value	State	Note	
12	mod off pause activ	Minimum switch-off time not triggered by error is running	
14	protection time active	Minimum switch-off time triggered by error is running	
16	endless protection time	by exceeding the permissible number of errors within the r interval of 2 minutes, the activation of the modulation was nently prevented. Restart is only possible by switching off supply or the high voltage.	perma-

4.4.22 Blockade handling

If the inverter tries to start against a mechanical blockage during start-up, or if the motor is blocked during operation, the inverter should detect this and react automatically without intervention by a control.

4.4.22.1 Blockade detection

By way that the motor blockage detection is activated, the ramp output value ru06 must be above a defined speed threshold.

pn87[2]	detection speed level		0x2A57 [2]
Value	Display	Note	
081920000	0.000010000.0000 rpm	Speed level for blockade detection	

The motor blockage detection compares the ramp output value (ru06) with the actual value (ru08).

If the actual value (ru08) is below and the setpoint ru06 above the value set in pn87[2] detection speed level, pn87[3] detection time is running.

pn87[3]	detection time		0x2A57 [3]
Value	Display	Note	
010000	0.00100.00 s	Time between falling below pn87[2 levels until the blockade state is tri	

If the ramp output value ru06 ramp out display is above the detection level and ru08 actual value is below the level, the blockade time counter counts up.

If one of the conditions is no longer met, the counter counts down.

The state blockade is set if the counter reaches the end value defined by detection time.

If a blockade is detected, the content of ru06 changes: the setpoint speed valid for the speed controller is no longer determined by external setpoints or the ramp generator, but is set by the programmed blockade reaction. The speed that would be valid if it were not suppressed by the blockade reaction can be seen in parameter ru86 standard set speed.

The state of the blockade monitoring is displayed in pn87[6]. (See chapter 4.4.22.3 Blockade display).

4.4.22.2 Blockade reaction

When the blockade reaction is finished, it is immediately change back to "standard" operation (without internal ramps or straightening).

If this is not desired, an error can be set at the end of the blockade reaction (parameterization of bit 7...9 "error").

Whether a change of the setpoint speed should have an influence on the blockade reaction can be parameterized in pn87[1] blockage mode.

The internally effective setpoint speed during the blockade and the current / torque limits can also be defined here.

pn87[1]	blockage me	ode			0x2A87 [1]	
Bit	Function	Valu e	Plaintext	Note		
		0	no reaction			
		1	save actual	The behaviour of this setting deption in bit 11,12 "Blockade reacti With the "no speed reduction" setpoint is frozen at the start of tourrent/torque limits are not affective.	on speed setting": etting, the internal he blockade. The	
		'	torque	For all other settings, the torque the actual set torque at the start action. The internal setpoint speed is de	of the blockade re-	
				during pn87[4] blockade reaction Same behavior as with "save act	n time	
		2	save actual torque until time	But after the pn87[4] blockage repired, the change to "blockage reoccurs.	eaction time has ex-	
03	reaction			A detected blockage is break do torque ramp. For this the torque limit is decrer zero. With Parameter pn87[5] lower limit is decrer limit is decrer zero.	mented linearly to	
	torque ramp * dr09 rated torque. The ramp is not affected	The ramp is not affected by this				
				limit is just not lowered further. The drive changes to the state "blockage reaction finished" at the end of pn87[4] blockage reaction time.		
	linear current ramp. For this the total current arly to zero. With parameter pn87[5] duction of the torque lim * dr03 rated current. The ramp is not affected limit is just not lowered for	For this the total current limit is o				
		4		With parameter pn87[5] lower lin duction of the torque limit can be * dr03 rated current.	e limited to pn87[5]	
				The ramp is not affected by this limit is just not lowered further.		
				The drive changes to the state "the finished" at the end of pn87[4] blume.		

The speed controller remains active during all blockade reactions.

The model shutdown for encoderless operation (A)SCL occurs as preset in the ds parameters (ds41...ds48 model control). There are no additional parameters for the blockage.

pr	187[1]	blocka	ge mode		0x2A87 [1]
		0	no warning	Warning bit is not set	
46	warning	16	warning at detection	The warning bit is set as soon as the blockage is detect (Transition of the status from "blockage detection time r ning" to "reaction hold" or "reaction time running") The warning is reset when the blockage detection state changes to "blockage detection inactive" or "no blockag detected".	
		32	warning at reaction end	The warning bit is set as soon as the st tion finished" is reached. The warning is reset when the blockage changes to "blockage detection inactive detected".	e detection state
		0	no error	Error Blockade is not set	
79	error	128	error at detection	The error blockade is set as soon as the blockade is detected. (Transition of the status from "blockage detection time running" to "reaction hold" or "reaction time running")	
	0.707		This means that the reaction setting has no fund		
		256	error at reaction end	The error blockade is set after the block elapsed. (Transition of the state after "blockage")	
	abort	0	no abort	A blockade reaction once started is always completed; speed setpoint has no influence.	
10	block- ade 1024		abort block- ade at set speed zero	If the speed setpoint ru86 standard set versal of the direction of rotation, the blaborted	
		0	reaction speed fade out	The internally effective setpoint speed of is internally decremented to zero during (allows linear torque reaction)	
				The internally effective setpoint speed i mented to zero at the start of the blocks	
111 2	Block- ade re- action			This also initiates the model shutdown is ation without encoder. Thus this setting problems due to instability of the speed speeds in encoderless operation.	is suitable to avoid
2	speed setting		8 reaction speed zero	The speed controller integral componer cycle with the set torque of the previous speed controller is active again. When moved, there is no "jerking" of the drive tinuously reduced.	s cycle. Then the the blockage is re- , the torque is con-
				However, the torque reduction does no linearly decreasing torque limit, but the control are visible.	•

pr	187[1]	blocka	ge mode		0x2A87 [1]
		4096		Behaviour like "reaction speed zero". Expanding effective setpoint speed is abruptly tection speed level and from there to zero.	y set to pn87[2] de-
		6144		only effective with reaction mode save a internally effective setpoint speed rema	

The time wherein the blockade reaction selected in pn87[1] is carried out can be preset in the following parameter.

pn87[4]	blockage reaction time		0x2A57 [4]
Value	Display	Note	
010000	0.00100.00 s	Time wherein - depending on the mode - the reaction (current/torque linear to zero / torque maintained / DC braking) is carried out.	
		The time for current/torque reduction is always constant, independent of the starting value	

Reducing the torque/current limit to zero can cause problems.

Current offset or position misorientation can cause movements that can no longer be compensated by the control.

This parameter can be used to preset the lower limit of the reduction in % rated motor torque or % rated motor current.

The ramp is not affected by this parameter. Due to the limitation, the value remains constant after reaching the lower limit until the end of the blockage reaction time.

pn87[5]	lower limit reduce		0x2A57 [5]
Value	Display	Note	
0100	0100%	Factor for limiting the current / torque reduction	n

4.4.22.3 Blockade display

4.4.22.3.1 Detailed state display

In the structure pn87 there is a parameter that dispays the actual status of the blockade detection:

pn87[6]	blockage detection status	0x2A57 [6]	
Value	Plaintext	Note	
0	blockage detection inactive	In parameter pn87[1] neither a control re of the "warning bit" or triggering of an en	
1	no blockage detected	Detection is activated, but the condition pn87[2] detection speed level and actual pn87[2] is not met.	
2	blockage detection time running	The condition setpoint above pn87[2] de and actual value below pn87[2] is met at pn87[3] detection time is running.	

pn87[6]	blockage detection status	blockage detection status		
Value	Plaintext	Note		
3	blockage reaction hold	The timer pn87[3] detection time has exp torque / current is held	oired and the	
4	blockage reaction time running	The blockage reaction is running and the decayed.	e torque/current is	
5	blockage reaction finished	A blockage is detected, the reaction is firm. This state is always left by switching off and, depending on the setting in pn78[1] speed equal to zero or change of the set rotation. The current and the torque are no longer blockage. The internal setpoint is held at zero.	the modulation , also at setpoint tpoint direction of	

4.4.22.3.2 Display in the ru parameters

If a value not equal to zero is parameterized in pn87[1] blockage mode->warning, bit *blockage warning* is displayed in ru02 and ru03.

ru03	warning state	0x2C03	
Value	Plaintext	Note	
137	blockage warning active	Blockade warning bit is set and no higher priority message is active	
ru02	warning bits		0x2C02
Bit	Plaintext	Note	
18	blockage warning	Blockade warning bit is set	

Whether bit **7:** *warning* is also set in the statusword st00 or 0x6041 when the blockade warning bit is set can be defined via the object pn28 warning mask.

4.4.23 Monitoring of the load

Parameter ru80 relative load is used to display the load of the entire drive system consisting of inverter, motor and application against torque and thermal limits.

No automatic reaction can be made dependent on the load display.

In the previous software versions, the rated torque was predefined by the drive. Object pn88 now allows you to choose between different options for defining the rated torque.

Configuration of the load display:

pn88	display config	guration			0x2515
Bit	Function	Valu e	Plaintext	Note	
0,1	0,1 display mode Standard display in ru80: Standard display in ru80: ru50 / ru51 > 100% => ru80 = ru24 actual torq ru50 / ru51 ≤ 100% => ru80 = ru24 / ru50 (or r		•		
		1	extended display	Display is configured by the settings in bit 2.	.7
	2,3 drive reference 4		no drive limit	Inverter limits are not consisered	
2,3			actual torque limit	Reference: 100% = current torque limit ru50 / ru51 (= limiting characteristic + parameterized torque limits in the cs parameters + effective current limits)	
4.5	application	0	no application limit	Parameter pn88[2] application torque limit he fluence on the display in ru80	as no in-
4,5	4,5 reference		constant limit	100% = pn88[2] constant torque limit => Application torque limit	
		0	no thermal limit	the thermal load is not considered	
6,7	6,7 thermal limit		thermal limit	Up to the rated speed, the reference for the torque is dr09 rated torque, then the therma nently available torque is reduced according function, independent of the motor type . (The load)	l perma- i to a 1/x

pn88	display config	display configuration 0x2				
Bit	Function	Valu e	Plaintext Note			
		64	thermal limit with dc voltage	The speed up to which the rated torque dr09 torque applies (before it is reduced accordin function) is shifted depending on the DC link If the DC link voltage >= dr28 Uic reference the rated speed applies. If the DC link voltage is lower, the speed for curve is reduced proportionally.	g to a 1/x voltage.	

4.4.23.1 Standard display

100% corresponds to the rated motor torque as long as the current torque limit is higher than or equal to the rated torque. The cause of a lower torque limit (ru50 / ru51 actual torque limit) can be the reduced torque in the field weakening range or the setting of a lower torque limit via the cs parameters.

```
The formula for ru80 relative torque is: ru50 / ru51 > 100% => ru80 = ru24 actual torque ru50 / ru51 \leq 100% => ru80 = ru24 / ru50 (or ru51)
```

4.4.23.2 Extended display

Parameter ru80 relative load is used to display the load of the entire drive system consisting of inverter, motor and application against torque and thermal limits.

4.4.23.2.1 Inverter / motor limits (drive reference)

The torque-dependent drive load is calculated from the current torque, torque limit and rated torque.

The calculation of the torque limit depends on the parameters that define the inverter maximum current and on the parameterization of the limiting characteristic.

Additionally the boundary conditions resulting from the data of the power unit always apply (current, switching frequency limits).

Reference value for a positive torque is always the positive limit, for a negative torque the negative limit.

4.4.23.2.2 Torque limit of the application (application reference)

The maximum permissible torque can also be defined by the application, e.g. if a connected gear can only transmit a certain torque permanently.

The reference of the application load can be defined with the setting of application reference (bit 4,5).

The actual torque used for the load calculation is always the motor torque regardless of any gear factors.

▶ 0: no application limit

The load display is not influenced by an application-dependent torque reference with value 0.

▶ 16: constant limit

The parameterized value in pn88[2] application reference is the reference value for the load calculation.

pn88[2]	application torque limit	0x2a58 [2]	
Value	Display	Note	
010000	0.0 1000.0%	Application-dependent reference to play in %dr09	orque of the load dis-

Application-dependent load = actual torque ru24 / reference torque pn88[2]

4.4.23.2.3 Thermal limit of the motor (thermal reference)

The setting of thermal reference (bit 6,7) can be used to determine whether the thermal load of the motor shall also be used for the display of ru80.

For the determination of the thermal rated torque it is assumed that the motor can also provide rated torque up to rated speed.

For the range above rated speed, it is assumed that the motor can continue supply rated power permanently without overheating.

The thermal rated torque is therefore equal to the rated torque up to rated speed and is then reduced according to a 1/x function.

It can be parameterized whether the DC link voltage influences the value of the thermal load.

4.4.23.3 Resulting display

The maximum value of the 3 loads (motor/inverter, application, thermal load of the motor) in % with 0.1% resolution is displayed in ru80 relative load.

ru80	relative load	0x2C50
Value	Display	Note
010000	0.01000.0%	
10001	invalid calculation result	The actual torque was higher than the reference torque by more than a factor of 10.

For a better overview of the reference values, the internal limit values are made available as displays in % of the rated torque:

pn88[3]	active torque limit	2A58[3]			
pn88[4]	active thermal limit		2A58[4]		
Value	Display	Note			
0 10000	0.0% 1000.0 %	Display of the reference values for the load calculation in % of the rated motor torque dr09. Resolution 0.1 %			

4.4.23.4 Restrictions

NOTICE

If modulation is deactivated, value zero is always displayed.

The display of ru80 is only valid in closed-loop operation with activated modulation.

In addition, no special functions such as DC braking, identification, etc. may be active.

The display is only conditionally usable for special motors (IPM and synchronous reluctance). In open-loop operation or other state there is no valid value for ru80.

The load display does not work in v/f mode, since the torque is the basis of all calculations.

If the motor data or the available currents change due to saturation, heating or similar, the torque limit and thus one of the reference points for the load calculation will also shift.

The display is to be used only conditionally for IPM and synchronous reluctance motors. Since the torque depends on both current components Id and Iq, which are changed by the control during operation, the reference torque can change permanently.

4.4.24 Quickstop

Quickstop is triggered by setting bit 2 (no Quick Stop) in the control word (co00) to 0. A change into state "Quick Stop active" can only be done from the state "Operation Enabled" (=> also description of the state machine in Chapter 3.1).

The quickstop function must be activated in co32 (state machine properties). If the quickstop function is deactivated, the quickstop bit in the control word is not evaluated and quickstop is not triggered.

The behavior in the quickstop state can be influenced by the object 0x605A.

	Quickstop option code	0x605A			
Value	Function				
0	Disable drive function (direct change into the state "Switched on")				
-1	Deceleration with the fault reaction ramp (=> Chapter 4.3.1.1)				
-2	Deceleration with the fault reaction ramp and remaining in the "Quickstop" state				
-3	Deceleration with the standard ramp (co48co60), transition to "switched on"				
-4	Deceleration with the standard ramp (co48co60) and remaining in the "Quickstop" state				
-5	Deceleration with the positioning module ramp (ps48ps59), transition to "switched on"				
-6	Deceleration with the positioning module ramp (ps48ps59), remaining in the "Quickstop" state"				

If Quickstop is activated in cyclic operating modes, the cyclically preset setpoints are ignored and the motion profile is generated independently by the drive, according to the selected Quickstop option code. If the function is deactivated during the Quickstop deceleration ramp, the preset setpoints apply immediately.

4.4.25 Minimum current monitoring in the safety module

With activation of the encoderless monitoring in the safety module type 5, the current is also monitored to a minimum limit. The current level is set on the safety module with parameter "Hysteresis of the electrical current" (2% default, from the current scales of the drives (de80[1])).

Parameter "Allowed time difference frequency to current" is used to set a filter time (200ms default) until an error is output by the safety module if the value falls below the current.

The drive complies with this setting by increasing the field-generating current.

For all motor types there is a limitation, either in the max. achievable speed or the minimum current generates additional heating.

Motor	field-generating axis			Torque	Limitation	Additional	
types	Axis	Mode	Stan d- still	une- qual ZERO	generating Axis	Max. achieva- ble speed	heating
SM	SM Id	Enc	-	-	la	No	Yes
SIVI		SCL	+	-	lq	INO	162
IPM	IDM Id	ENC	-	1	la	No	Yes
IPM Id	SCL	+	1	Iq	INO	162	
SynRM	Iq	ENC	+	+	ld	Yes	Yes
		SCL	+	+			res

With SRM there is no sign change, stabilisation is achieved with a positive sign. This current limits the max. achievable speed and the minimum current cannot be maintained above this speed (reason: prioritisation of current controller components).

For SM and IPM without encoder, the sign must be changed depending on the level of the speed in order to operate the motor in the field weakening. For this change, parameter "Allowed time difference frequency to current" in the safety module is decisive.

Index	Id-Text Name		Function			
0x3720	fc32	minimal current (SM)	Parameter structure to define the behaviour to set a minimum current. Only synchronous machines of the type: SM (SM,IPM,SRM), no asynchronous motors			
Sub Idx	Name		Function			
1	min. cur	rent mode	Different modes are adjustable			
2	min. current [%de80[1]]		Minimum current in % of the current measuring range end value (de80[1] current scale value) Calculation example: de80[1] = 100.0A, fc32[3]= 3% $\Rightarrow \qquad \text{Minimum current (effective value)} = \frac{100 \text{ A}}{\sqrt{2}} * \frac{3\%}{100\%}$ = 2.21 A			
3	ramping time		Ramp time, related to the rated motor current. To compensate the missing current or to change the sign the stabilisation current, a ramp can be specified via this rameter. Setting instructions: Mode 1: > 10ms Mode 2: < 10ms			

fc32	min. curren	nin. current mode			0x3720 Sub Idx. 1
Bit	Function	Valu e	Plaintext	Notes	
		0	off	Off	
02	mode	1	stabilisation current	The minimum current is monitored depending on the setpoint in the stabilising current axis.	
		Δ			mum current is monitored de- on the level of the total current
02		2	apparent current	the minin lisation c ency can the positi advantag	total current setpoint is above num current, no additional stabiurrent is supplied. This dependause the system to oscillate if on is misaligned, but has the ge that the motor is not heated tional current under load.

The compensation of the minimum current is in the range of -2*Imin...+2*Imin. If, for example, the stabilisation current is adjusted via the Isd offset (ds55), it may not be possible to compensate this via the minimum current function in order to achieve the "set" sign.

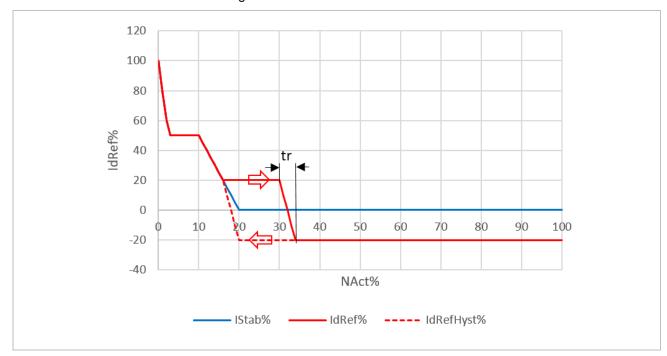


Figure 24: Minimum current course

SM/IPM without encoder with ramp time (tr, fc32[3]) and Imin=20% of rated motor current, speed leakage values via stabilisation current (here ds38=100%, ds35=50%, ds36=10%, ds37=20%). The speed hysteresis results from ds37 + (ds37-ds36).

4.5 Braking transitor (GTR7)

4.5.1 Braking transistor handling

Index	Id-Text	Name	Function
0x2A1F	pn31	enable braking trans. source	Defines a digital input for GTR7 activation
0x2A20	pn32	braking transistor level	Level of the DC link voltage to activate the GTR7. (is internally limited by the input voltage) resolution: 0.1V
0x2C3F	ru63	Uic voltage at Power On	Measured DC link voltage at the end of the pre- charging
0x351E	is30	braking transistor function	Activation of the GTR7 functionality
0x2024	de36	braking transistor default level	Display of the default switch-on threshold of the GTR7 (depending on the power unit)
0x2A21	pn33	braking transistor mode	Options for braking transitor activation / deactivation

Parameter de36 indicates if the used inverter contains a braking transistor module.

de36	braking transistor default level	0x2024
Value	Function	
0: no braking transistor the inverter does not contain a braking transistor		
other values	Default switch-on threshold in 0.1V resolution	

On default set loading the value for pn32 braking transistor level is written to the value of de36. The braking transistor is not activated automatically.

To use the braking transistor, the braking transistor functionality must be enabled with is30 braking transistor function.

If parameter is30 braking transitor function is not set to 1: on, the braking transistor is never switched on by the software, regardless of all other parameters. Parameter is30 is already activated at the factory for devices with submounted braking resistor.

4.5.1.1 Braking transistor activation / deactivation

4.5.1.1.1 Voltage-dependent activation

The response threshold of GTR7 is adjusted in parameter pn32 braking transistor level with a resolution of 0.1V.

When connecting the mains the DC link of the inverter is precharged to the max. value of the input voltage ($U_{DC link} \approx \sqrt{2 * U_{mains}}$). This DC link voltage value at the end of the precharging limits internally the switching level of the braking transistor.

The value can be read in ru63 Uic voltage at Power On. If the value in pn32 < 1.06 * ru63, the switching level of the braking transistor is internally set to 1.06 * ru63.

This threshold ensures that the braking transistor is not responded by the mains input voltage. However, provided that the mains input voltage does not increase upon completion of the precharging of the DC link.

The default values for the braking transistor threshold are depending on the voltage class of the inverter.

Voltage class	OP threshold	Braking transistor threshold
230 V	400 V	380 V
400 V	840 V	780 V
690 V	1200 V	1140 V

Table 4-3: Switching threshold for braking transistor

The braking transistor is switched on as soon as the DC link voltage exceeds the threshold and switched off as soon as the threshold is below the threshold. The maximum switching frequency is currently 4kHz.

By default, when the braking transistor is activated via DC link voltage, it is only activated when the modulation is enabled.

Also the braking transistor is not switched on if there is an error or the modulation is deactivated by the status machine.

Exception: if in ds04 current mode in bit 3: bandpass filter the setting "8: on" is selected or if the voltage exceeds OP2 (extreme overvoltage level), the braking transistor is never deactivated.

4.5.1.1.2 Activation via digital input

In addition (corresponds to OR link), the braking transistor can be also be activated by a digital input.

The digital input can be selected in pn31 enable braking trans. source.

Activation via digital input always operates when ru04 supply unit state is 4: run, independent of the modulation release. □

4.5.1.1.3 Deactivation options

In Parameter pn33 braking transistor mode, you can variably configure which sources can deactivate the braking transistor.

The specification that the braking transistor is never deactivated when the bandpass filter is active remains. This exception has priority over the settings in pn33.

The braking transistor can generally only be activated when the precharging is completely finished (ru04 supply unit state = "4: run").

Exception: If the deactivation of the input thyristors is triggered by OP2, the braking transistor remains active.

pn3	33	braking trans	sistor mode 0x2A21		0x2A21
Bit	Bit Name		Plaintext	Note	
0	o voltage error dependency		1: Udc: GTR7 off at error	GTR7 is also switched off at voltage-depetion when an error is present that has swit modulation.	
			0:Udc: no GTR7 mod state dependency	The voltage-dependent GTR7 control is in the state of the modulation and the STO in	
1,2	voltage modulation dependency		2: Udc: GTR7 off at STO missing	Deactivation of the GTR7 if the STO input the safety module or on-board) are not se	
			4: Udc: GTR7 off at mod off	Deactivation of the braking transistor if the is deactivated	modulation
3	3 input error dependency 1: input: GTR7 off at error Braking transistor is also switched off when act by a digital input if an error is present that has off the modulation.				
			0:input: no GTR7 mod state dependency	The digital input-dependent braking transi independent of the state of the modulation STO inputs.	
4,5		ut modulation endency	16: input: GTR7 off at STO missing	Deactivation of the braking transistor if the (virtual via the safety module or on-board) in ru18.	
			32: input: GTR7 off at mod off	Deactivation of the braking transistor if the is deactivated	modulation
6	inp: ru6	off at Udc < 3	64: input: Udc < ru63	The braking transistor cannot be activated tal inputs as long as the DC link voltage (U * 1.06	

Bit 0..2 can be used to prevent deactivation of the voltage-dependent brake transistor control.

The activation of the braking transistor by a digital input can additionally also be made subject on the modulation with bit 3..5.

4.5.2 Braking transistor protective functions

With some inverters, the braking transistor can be monitored:

The braking transistor OC detects a short circuit at the braking resistor connections.

The so-called feedback signal (short-circuit / function monitoring of the transistor) can be used to monitor whether the braking transistor is still switching. Whether the inverter in question supports this protective function is listed in the installation manual.

A short circuit at the braking resistor connections leads to error message 116 "ER-ROR GTR7 OC". This error cannot be deactivated if the inverter has the appropriate monitoring. A reset of this error is only possible after 1 second.

If the braking transistor cannot be switched on, the drive goes to 115 "ERROR GTR7 always OFF". If the braking transistor cannot be switched off, the drive goes to 117 "ERROR GTR7 always ON".

For all inverters that have the monitoring function in hardware, it is activated as soon as the GTR7 functionality is30 = 1 "on".

If the error "ERROR GTR7 always ON" is detected, the input thyristors of inverters whose DC link is supplied via input thyristors are switched off.

NOTICE

Hazards and risks through ignorance!

➤ If the error "ERROR GTR7 always ON" occurs, the drive controller must be disconnected from the mains supply within 5 minutes!

If the inverter modulation is switched off by OH, also the braking transistor must be deactivated, because it can also be destroyed by overtemperature. If OH is still decelerating at a ramp (error reaction ramp), the braking transistor is also not switched off during this time.

Additionally valid: If the DC link voltage exceeds the overvoltage level (OP), the braking transistor remains active.

WARNING

Load of the braking resistor in case of overvoltage

- ➤ The overvoltage level should never be exceeded when using a braking resistor. A motor accelerating uncontrollably due to errors, incorrect parameterisation (e.g. of the EMF) or incorrect adjustment of a filter can lead to extreme overvoltage. If the regeneration by the application is greater than it can be reduced by the braking resistor, the overvoltage level can also be exceeded. This overload case must be considered when selecting / protecting the resistor.
- Activation for too long (especially with input-dependent instead of voltage-dependent control) can lead to overheating and destruction of the braking resistor.

4.5.3 Power calculation at the braking resistor

Index	Id-Text	Name	Function
0x351F	is31	braking resistor model	Parameter structure for displaying the power at the braking resistor
	Sub Idx	Name	Function
	1	braking resistor	Resistance value of the braking resistor
	2	average dissipated power	Average power consumption of the braking resistor (PT1 time = 4.3 min)
	3	relativ temperature wire	
	4	relativ temperature surface	
	5	peak relativ temp. wire	Function not supported
	6	peak relativ temp. surface	
	7	error Rth*Cth < Tmin	
	8	energy over braking resistor	Energy absorbed by the braking resistor (resolution: 0.01 kWh) The value can be reset / set to any value by writing to the parameter.
	9	power over braking resistor	Actual power flowing into the braking resistor. The filter time is calculated from the basic process time (see description is22) (TFilter = 48 * basic Tp at Tp = 62.5us TFilter is = 48 * 62.5us = 3ms)

4.6 Fan control

4.6.1 Fan control F6

The F6 has one or more fans depending on the device size and the cooling version (air or water cooling or flat rear). Whether a fan is included and whether it is implemented as an individual fan or a fan group can only be determined from the installation manual for the respective power unit.

A distinction is made between the interior fans, which are controlled by the internal temperatures(ru26 internal temperature PU / ru77 internal temperature CB) and the heat sink fans, which are dependent on the heat sink temperature.

Some devices contain fans that adjust their speed depending on the temperature and the individual fans in a group are sometimes switched on sequentially. Other inverters have only the on/off state of the fans.

The switch-on temperature can be changed by parameters is 26 / is 27.

is26	cooling fan HS level	0x351A
is27	cooling fan ID level	0x351B
Value	Meaning	
-1: on	The fan / fan group is always running at full speed. The start process (sequential activation or start ramp) is pass through.	
0: LT Value	Fan is activated with default setting (power unit-dependent)	
0.1°C	Activation threshold in °C. The upper limit depends on the respective power unit.	

For inverters that contain variable-speed fans, the temperature at which the maximum fan speed is reached can also be parameterized:

is28	HS fan full speed temp	0x351C
is29	ID fan full speed temp 0x351D	
Value	Meaning	
0: LT Value	Fan reaches maximum speed with default setting (power unit-dependent)	
0.1°C	Maximum speed level in °C. The upper limit depends on the respective power unit.	

4.6.2 Fan control S6-A / S6-K

The S6 servo controller has only one fan, which is controlled by the interior (ID) or heat sink (HS) temperature.

The fan is activated in the default setting for unit sizes 9, 10 or 11, if the interior temperature or the heatsink temperature exceeds 50°C.

This threshold is dependent on the power unit and can vary for other sizes or special devices.

The switch-off threshold is 5° C below the switch-on threshold and the minimum switch-on time is 5° C.

The switch-on temperature can be changed by parameters de116 / de117.

de116	cooling fan HS level	0x2074	
de117	cooling fan ID level 0x2075		
Value	Meaning		
-1: on	Fan is always on		
0: LT Value	Fan is activated with default setting		
0.150.0	Activation threshold in °C, is limited upwards depending on the power unit. (For unit size 9, 10 or 11 the upper limit is equal to the default setting = 50 °C)		

4.7 Terminals short circuit protection

4.7.1 Control type K

The digital outputs Out 1...Out 4 on the terminal blocks X2A and X2B, as well as the voltage outputs 24V OUT and the 24V encoder supply are short-circuit protected.

However, the current is not limited to the maximum permissible value (=> installation manual), but it is a thermal protection.

Thus the inverter is protected against destruction, but the 24V supply can failure due to overload.

If the supply voltage does not failure, the inverter changes to the following errors:

Short circuit of a digital output	100 "ERROR overcurrent out1" 101 "ERROR overcurrent out2" 102 "ERROR overcurrent out3" 103 "ERROR overcurrent out4"
Short circuit of a 24V voltage output	106 "ERROR overcurrent 24V"
Short circuit of the 24V encoder supply	105 "ERROR overcurrent encoder"

4.7.2 Control type A

The digital outputs Out 1 and Out 2 on the terminal block X2A, as well as the voltage outputs 24V OUT and the 24V encoder supply are short circuit protected.

However, the current is not limited to the maximum permissible value (=> installation manual), but it is a thermal protection.

Thus the inverter is protected against destruction, but the 24V supply can failure due to overload.

If the supply voltage does not failure, the inverter changes to the following errors:

Short circuit of a digital output	100 "ERROR overcurrent out1" 101 "ERROR overcurrent out2"
Short circuit of a 24V voltage output	106 "ERROR overcurrent 24V"
Short circuit of the 24V encoder supply	105 "ERROR overcurrent encoder"

4.7.3 Control type P

Description of the digital outputs see installation manual of the Pro control board

4.8 Operating modes

The operating mode is essential for the context in which an inverter is operated. The selection occurs via object co01:

Index	Id-Text	Name	Function
0x2501	co01	modes of operation	Selection of the operating mode
0x6060		modes of operation	Selection of the operating mode

The single values of co01 have the following meaning:

	· ·			
co01	modes of operation	0x2501		
Value	Name	Note		
-2	jog mode	Manufacturer-specific operating mode: the drive should be able to be moved independently via digital inputs, e.g. in case of failure of a higher-level control.		
0	no mode change	Does not change the mode		
1	profile position mode	Presetting the target position by the control Generation of the motion profile in the drive Position-, speed and torque control in the drive		
2	velocity mode	Presetting the target speed by the control Generation of the speed profile in the drive Speed- and torque control in the drive		
6	homing mode	Used to define the reference position		
8	cyclic sync position mode	Cyclic presetting of the set position by the control Interpolation of the set positions in the drive Position, speed and torque control in the drive		
9	cyclic sync velocity mode	Cyclic presetting of the set speed by the control Position control circuit in the control Interpolation of the set speed in the drive Speed and torque control in the drive		
10	cyclic sync torque mode	Cyclic setting of the set torque by the control Position and speed control circuit in the control Interpolation of torque in and torque control Drive		
35, 7	reserved	Reserved, do not use!		

Generally distinction is made between synchronous and non-synchronous operating modes. For synchronous operating modes (=> Synchronization), all setpoints are transmitted to the drives within a fixed synchronous time grid. The correct function of the drive is only ensured if control grid and setpoint setting are synchronized. This is displayed with bit 8 (synchronous) in the status word.

4.8.1 Operating mode 1: Profile position mode

There are 2 modes for the positioning mode:

- profile position mode with FIFO (=> Chapter 4.8.1.2 Profile positioning mode with FIFO (pp-mode))
- Index positioning (=> Chapter 4.8.1.3 Index positioning

Switching between the two modes is done in parameter ps38 positioning module in bit 0.

ps38	positioning module			0x2E26	
Bit	Function	Value	Plaintext	Notes	
		0	pp-mode	profile position mode with FIF Positions must be preset for e	
	positioning module	1	index selec- tion	index positioning Up to 32 position sets are stored be passed through according	

A single position can be approached in positioning mode or position sets can be programmed which shall be reached one after another or which shall be passed through with defined speed.

4.8.1.1 Controlword in profile position mode

co00	controlword	0x2500
Bit	Name	Note
0	Switch on	
1	Enable voltage	State machine
2	no quick stop	Otate machine
3	Enable operation	
4	Start Posi	Starts a positioning
5	Change Set Immediately	Changes immediately to a new positioning
6	Absolut / Relativ 0 : Absolute, 1 : Relative positioning	
7	Fault reset	Fault reset
8	Halt	Sets setpoint 0, finishes a positioning
9	Change on Setpoint is not supported	
1014	Operation mode specific Manufacturer-specific, without function	
15	Open brake Manufacturer-specific, 1 opens the motor brake (depending on co21 brake control mode	

4.8.1.2 Profile positioning mode with FIFO (pp-mode)

Up to 5 position sets can be stored in the FIFO memory. However, these position sets are not stored permanently, but must be preset for each restart.

A position set for the positioning consists of the following objects.

- (CiA 0x607A) co19 target position
- (CiA 0x6081) ps30 profile velocity
- (CiA 0x6082) ps31 end velocity
- Bit 6 in the control word, absolute (Bit = 0) or relative positioning (Bit = 1).

The single position sets are generated when the actual values of parameters co19, ps30, ps31 and the "absolute / relative" control word bit are written into the FIFO memory with setting of bit "new setpoint" in the control word.

The start of the positioning occurs with bit 4 (new setpoint) in the control word. Acknowledgement occurs with bit 12 (setpoint acknowledge) in the status word.

An already active positioning can be interrupted with bit 8 "stop" in the control word or by setting a new position set with bit 5 "change set immediately".

If a positioning is completed, also the setpoint via vl20 / vl21 is active.

Thus, a positioning can be started directly from operation with speed setpoint. Conversely, it can be changed directly after positioning with final speed to the speed setpoint.

4.8.1.2.1 Overview profile positioning mode with FIFO

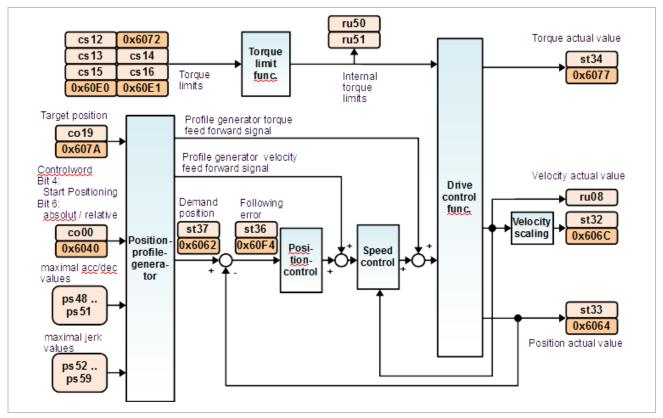


Figure 25: Profile positioning mode (1)

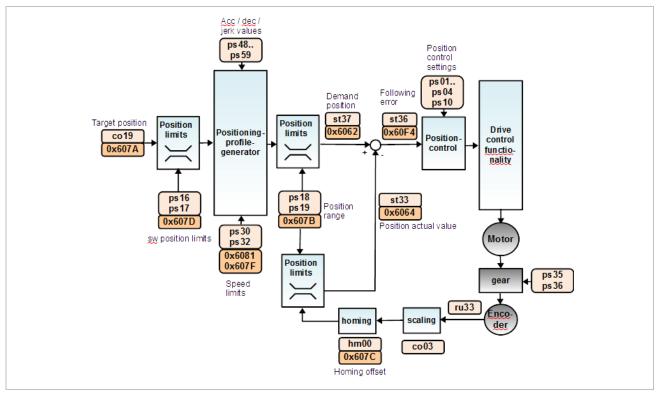


Figure 26: Profile positioning mode (2)

4.8.1.2.2 Single positioning (single set-point)

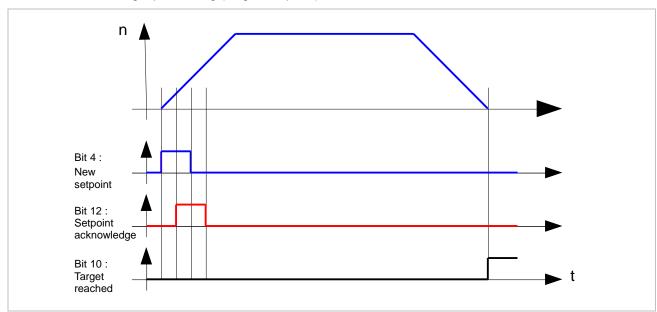
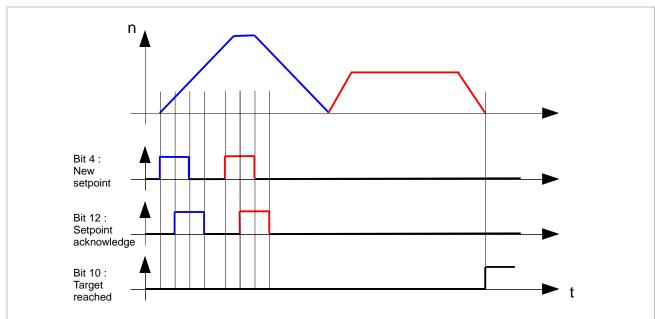



Figure 27: Single positioning

4.8.1.2.3 Multi positioning (Set of set-points)

Figure 28: Multi positioning

Here, the second position is only approached after the first positioning has been completed. There is a FIFO memory with 5 entries in order to add further position sets.

If this internal memory is occupied, bit 12 (set-point acknowledge) in the status word remains set until a memory space is available again.

Bit 4: New set-point and Bit 5: Change set immediately Bit 12: Setpoint acknowledge Bit 10: Target reached

4.8.1.2.4 Restart in a positioning (Change set immediately)

Figure 29: Restart of a positioning

In this case, further positioning is started during single positioning, whereby bit 5 (change set immediately) is set additionally in the control word. Then all existing position sets are deleted and continued with the new position set.

4.8.1.3	Index	positioning
4.0.1.0	IIIUEA	positioning

Index	Id-Text	Name	Function
0x2E26	ps38	posi operation mode	Changes between pp mode with FIFO and index positioning.
0x2E27	ps39	index position	Array[32] positions selectable via the inputs.
0x2E28	ps40	index speed	Array[32] setpoint speed for this position index
0x2E29	ps41	index end speed	Array[32] speed setpoint for set position
0x2E2A	ps42	next index	Array[32] subsequent index for automatic sequence of positions
0x2E2B	ps43	index mode	Array[32] position mode
0x2E2C	ps44	immediately input	Mask to generate an input for the abort of an index positioning
0x2E2D	ps45	immediately index	Index selection for the abort
0x2E2E	ps46	start index	Setting of the starting index. The value -1 allows a setting by digital inputs
0x2E2F	ps47	active index	Display of the currently active index for positioning

A sub-mode is implemented for the pp-mode, by way up to 32 different positions can be selected by the digital inputs (defined by di21).

Positioning is started with bit 4 (new setpoint) in the control word. This can also be done with a digital input (=> Chapter 7.1.9 Functions of the digital inputs).

An already active positioning can be stopped with bit 8 "stop" in the control word. This function can also be activated with a digital input.

The positions can be linked with ps42, by way a sequence control system is possible.

The speed setpoint is preset to the appropriate ps39 index position with ps41 index end speed. This value must always be lower than the profile speed setpoint during the positioning (ps40 index speed).

The speed setpoint during positioning can always be reduced with ps32 (CiA 0x607F) max profile velocity.

There is no negative acknowledgement for the index positioning. This means, the new position is always accepted. Thereby position setpoints are also possible, which can not be reached with compliance of the current setpoint ramps. The index positions must be corrected by way that the distance to the new set position can also be reached with the valid ramps.

4.8.1.3.1 Single positioning

If value -1 "off" is set in ps42 next index, a position can be selected with ps46 start index, which is then approached with the next start positioning command.

Operating modes

If value -1 "with digital input" is entered in ps46 start index, the index selected via digital inputs (=> Chapter 7.1.9.3 Index setting via digital inputs) is used as start index.

4.8.1.3.2 Sequence control system

There are 2 types of sequence control systems "auto index mode" or "stop after each index". The selection is made via ps38 posi operation mode.

ps38	posi operation mode		
Bit1	index mode		
Value	Name	Note	
0	auto index	After the "Start Positioning" command, all index positions are moved in succession until an index is reached for which value -1 "off" is programmed in parameter ps42 next index.	
	mode	The first position is defined by ps46 start index.	
		ps46 is not changed automatically.	
	stop after each index	With this index mode, the positioning is completed after each index in case of subsequent positioning (ps42 next index unequal -1). The new index (ps42 next index) is automatically entered in ps46 start index. With the next command "Start positioning" the index entered in ps46 is used.	
2		Therefore, a "Start Positioning" command must always be given to move to the individual positions of the programmed sequence.	
		If a positioning sequence is finished (ps42 next index = -1), the value of ps42 next index (-1) is copied in ps46 start index when the last target is reached.	
		The next positioning sequence starts with the index which is selected via digital inputs.	

The sequence of the positions is determined via ps42 next index.

ps42	next index	
Value	Name Note	
		End of sequence control system
-1	off	The positioning is completed as soon as the actual index position is reached.
031	next index As soon as the position of the actual index is reached, it is switched to the next index.	

A running index positioning can be interrupted and programmed to alternative sequence with ps44 and ps45.

The condition for this can be assigned (e.g.) to the software outputs OA...OC via the do-objects.

There is no negative acknowledgement for the index positioning. This means, the new position is always accepted.

Thereby position setpoints are also possible, which can not be reached with compliance of the current setpoint ramps. The index positions must be corrected by way that the distance to the new set position can also be reached with the valid ramps.

4.8.1.4 Operating modes of positioning

In Profile positioning mode there are the same positioning modes for positioning with FIFO and positioning in index mode. However, they are adjusted in different objects.

4.8.1.4.1 Positioning modes in profile positioning mode with FIFO

The absolute positioning is selected in $co00\ 0x6040controlword$ with bit 6 (absolute/relative) = 0.

Optionally, the operating mode which is most appropriate for the application can be selected with ps33 absolute positioning or in the index mode with ps43 index mode.

ps33	absolute positioning 0x2E21	
Value	Name	Note
1	shortest path selection	Round table positioning with shortest path. The inverter automatically selects the appropriate direction of rotation
2	forward	Round table positioning, only forward
3	reverse	Round table positioning, only reverse
4	relative to zero	Approach of an absolute position within one motor revolution (tool change)
5	reserved	
6	within single rotation of enc A	Approach of an absolute position within one revolution of encoder A considering the gear factor of ec24 and ec25

4.8.1.4.2 Positioning modes for index positioning

ps43	index mode 0x2E2B		
Value	Name	Note	
2	shortest path selection	Round table positioning with shortest path. The inverter automatically selects the appropriate direction of rotation	
3	forward	Round table positioning, only forward	
4	reverse	Round table positioning, only reverse	
5	relative to zero	Approach of an absolute position within one motor revolution (tool change)	
6	speed reference	Simple setpoint setting with ps40 in this position index	
7	within single rotation of enc A	Approach of an absolute position within one revolution of encoder A considering the gear factor of ec24 and ec25	

4.8.1.4.3 Absolute / relative positioning

4.8.1.4.3.1 Selection in profile positioning mode with FIFO

Bit 6 "abs/rel" in the controlword determines if the position values shall be absolute or relative positions.

4.8.1.4.3.2 Selection for index positioning

In ps43 index mode can be selected, if the position values shall be absolute or relative positions. Bit 6 "abs/rel" in the controlword has no meaning.

ps43	index mode		
Value	Name	Note	
0	relative	Relative positioning	
1	absolute	Absolute positioning	

4.8.1.4.3.3 Relative positioning

For relative positioning there is a further differentiation:

If the respective relative positioning should be independent how exactly the last target was reached, the new position must be calculated relative to the current actual position.

If, on the other hand, the sum of the relative positionings in relation to a reference point should be as exact as possible, the new position must be calculated relative to the current set position.

ps38	posi operation mode		
Bit 2	relative positioning		
Value	Name	Note	
0	set position	Relative positioning always occurs from the internal set position. Even with multiple positioning, no errors can add up.	
4	actual position	Relative positioning always occurs relative to the actual position	

4.8.1.4.4 Relative to zero

In the position mode "relative to zero" the motor should stop in a defined position within one motor revolution (e.g. for tool change).

Position value 0 corresponds to the zero signal of the encoder.

The selection of such a defined position index shall be done from a constant motion.

The setpoint speed (profile speed) of this positioning (ps30 0x6081profile velocity or ps40 index speed) must be higher than the setpoint speed at the start of the positioning.

The value range for ps39 index position must be within a positive motor revolution (0...65536).

A final speed is not permitted (ps41 index end speed / or ps31 0x6082end velocity = 0).

4.8.1.4.5 Relative to enc A with gear

Positioning of any constant speed setpoint to the absolute position of encoder A within one revolution.

Encoder A can be installed in front of a gear.

The distance is defined by the ramps (e.g. tool change).

The gear factor in ec24 and ec25 is considered.

The target position is preset exactly as in ru38[3] gearless pos low.

The permissible value range is 0 ... 65535.

4.8.1.4.6 Round table positioning

A positioning over 360° is possible for round table positioning or similar. Positions on this cycle can be appraoched from both directions. The referencing can be monitored at a non even-numbered gear factor.

The definition of the value range of the round table occurs according to the general set- / actual position limits and is described in chapter 6.5.1 Position values.

Also the cyclic referencing is possible in all position-controlled modes and is described in chapter 4.8.4 Cyclic referencing.

ps38	posi opera	posi operation mode	
Bit3	round tabl	round table mode position	
Value	Name	ne Note	
0	off	The limits of ps18 and ps19 have only effect on the non-linear torque pre-control with linear value range	
8	on	The value range for the round table function is defined with ps18 and ps19.	

4.8.1.1 Positioning with start speed

Positioning can also be started directly from a setpoint, note that the DRIVE is in a constant movement (no ramps active). Furthermore, the setpoint must be within the limits of ps30 or ps40. If you do not follow these instructions, errors may occur in the profile calculation and the drive may not reach the desired position directly. After stopping, the desired position is then automatically approached in a second positioning.

4.8.1.2 Position controller

In "Profile position mode" the position controller is always active by default. The position controller is always active with ps00 position control mode = 1 "auto (Default)" or 2 "on".

Also in operating mode 1, both setpoint speed and set position values can be preset to the drive.

If setpoint speeds are preset in operating mode "1: profile positioning mode" when the position controller is activated, they are integrated and a target position is calculated (st37 demand position). If the drive cannot follow the setpoints exactly, the actual position is adjusted via the position controller.

If this permanent activity of the position controller is not desired, it can be switched "off" with ps00 position control mode = 0. st37 demand position and st36 following error are set to zero.

ps.53 ps.54 ps.55 ps.59 ps.59 ps.51 ps.57 ps.58

4.8.1.3 Ramps in profile position mode

Figure 30: Ramps in profile position mode

The behaviour of the ramp generator can be adapted to the requirements of the application via object ps60 ramp mode.

Index	Id-Text	Name	Function
0x2E3C	ps60	ramp mode	Operational performance of the ramp generator

The bits in ps60 have the following functions:

ps60	ramp mode		C)x2E3C
Bit	Function	Value	Function	
0		0: S-curve	S-curves	
	ramp type	1: lin	Linear ramps	
		0: sep. para	ps48ps51	
1	linear ramp acc/dec	2: acc for para	ps48 is acceleration/deceleration setting for all directions of rotation (only effective if linear ramps are selected, otherwise ps48ps51) always appl	
2	a aurua tuna	0: continuous s-curve	Only effective if no positioning	is active.
2	s-curve type	4: abort in s-curve	See also graphic under co60	
3	pass zero	0: not zero	Only effective if no positioning	is active.
3	type	8: zero	See also graphic under co60	
		0: single para setting	The acceleration and deceleration of rotation is defined separ sponding parameters.	
		16: all	The value in ps48 defines the a as the deceleration for both dir	
4,5	same acc dec	32: dec = acc	The values in ps48 and ps50 a eration for the respective direct ps49 and ps51 have no function	tion of rotation.
		48: rev = for	The values in ps48 and ps49 a eration or deceleration for the rotation.ps50 and ps51 have r	reverse direction of
		64: all	The value in ps52 determines a rameters ps53ps59 have no f	
67	same jerk	128: acc and dec	ps52 for acc jerk ls [s-3] define jerk values, ps54 for dec jerk h celeration jerk values.	s [s-3] defines all de-
			ps53 and ps55ps59 have no t	
		192: rev = for	The four jerk values for the rev tation are taken over from the f rotation. ps56ps59 have no fu	forward direction of

In addition to the ramps in the Ps parameters, fault reaction, shutdown or standard ramps can also become effective. Observe setting of ${\it co32}$.

The ramp generator is described in more detail in chapter 4.8.2.4 Ramp generator Velocity mode.

4.8.1.4 Speed limits

The maximum speed is limited in the operating mode profile positioning mode via ps32 (CiA 0x607F) max profile velocity. A change is also possible with active positioning.

This value limits all setpoint speeds (target velocity vl20 / vl21, ps40 index speed, setpoint speed from the profile generator), with the exception of the position controller output.

The position controller output value can still be added to the (CiA 0x607F) max profile velocity ps32.

4.8.1.5 Position limits

The position setpoint and position actual value limits are described in chapter 6.5.1 Position values.

4.8.1.6 Speed settings

Speed setpoints can also be specified in the "Profile positioning mode" instead of position setpoints.

There are 2 different modes:

- Speed setpoint setting via the vI parameters
- Index speed setting

If no positioning and no index speed is active, the speed setpoint setting is set via the vI parameters (=> Chapter 4.8.2.1 Set speed setting). The speed setting via the vI_parameters is always limited additionally to the limit of ps32 by the vI velocity min / max amount parameter (vI04...vI07).

In the "Index positioning" mode, a simple fixed speed setting (index speed setting) of up to 32 different speeds can also be realized instead of a positioning sequence in the following way:

- According to the number of desired speed setpoints, a number of digital inputs must be defined, which are used for index selection (=> Chapter 7.1.9.3 Index setting via digital inputs).
- For the used array indices value 6 "speed reference" must be entered in ps43 index mode [].
- The setpoint speeds must be entered in the used array indices of ps40 index speed.

Example:

It should be possible to specify 5 fixed speeds with digital inputs:

-1000, -500, 0 , 500 und 1000 rpm

Three inputs are required in order to display the 5 numbers (0, 1, 2, 3, 4) digitally binary (000_b,001_b,010_b,011_b,100_b). The inputs I1, I2, I3 are selected

di21 index input = 7: I1 + I2 + I3

Operating mode 1 must be selected

• co01 = 1

value 6 "speed reference" must be entered in ps43 index mode []

- ps43 index mode [1] = 6
- ps43 index mode [2] = 6
- ps43 index mode [3] = 6
- ps43 index mode [4] = 6
- ps43 index mode [5] = 6

The setpoint speed must be entered in ps40 index speed []

- ps40 index speed [1] = -1000
- ps40 index speed [2] = -500
- ps40 index speed [3] = 0
- ps40 index speed [4] = 500
- ps40 index speed [5] = 1000

If, for example, input I2 is now set ru58 actual Index will have the value 2. The array index is always actual index +1, =3

Thus the setpoint speed ps40 index speed [3] = 0 is selected.

If no input is set, ru58 actual Index has the value 0. The array index is then 1, thus the setpoint speed ps40 index speed [1] = -1000 is selected.

4.8.1.7 Following error

The following error (st36 following error) can be monitored in all operating modes with active position controller. The description of the following error monitoring is described in chapter 6.5.4 Following error.

4.8.1.8 Target reached

Bit 10 in the status word "target reached" is only managed in the profile positioning mode. The "target reached" bit is only set when an (intermediate) target is reached if:

- in profile positioning mode with FIFO there is no further position set in the FIFO (i.e. a subsequent positioning is not started immediately)
- in auto-index mode (ps38 positioning module Bit 1 index mode = 0 "auto index mode") the last position is reached (ps42 next index [] = -1 "off"). If a loop is programmed (last index points to start index), bit 10 target reached is never set.
- in stop-after-each-index-mode the current target position has been reached.

The behaviour depends on the setting in ps31 (CiA 0x6082) end velocity or ps41 index end speed. The bit "target reached" (TR) is set immediately after completion

of the pre-control profile if the target speed (ps31 or ps41) is not equal to 0. Otherwise the target window (ps14 (CiA 0x6067) positioning window and ps15 positioning window time) is considered.

ps31 or ps41 ≠ 0	ps31 or ps41 = 0	
the pre-control pro-	the pre-control profile at the target has expired	
file at the target has expired	ps14 (CiA 0x6067) positioning window defines a position window symmetrically to the target position (position win- dow = target position +/- ps14).	
	ps15 (CiA 0x6068) positioning window time defines the time the drive must be in this target window.	
	➤ The drive is in the target window for the time ps15 (target position +/- ps14).	

Attention, when reaching the target position, bit 4 in the co00 (CiA 0x6040) controlword must no longer be set in order to trigger bit 10 target reached in the st00 (CiA 0x6041) statusword.

To start a new positioning, the positioning must be completed. A completed positioning means:

- the bit target reached is set for single positioning
- the drive is in the target window in the following positioning

If a new positioning shall be started without finishing the previous one, this is only possible via the bit change set immediately or by removing the modulation release.

4.8.1.9 Examples for rotary table positioning

4.8.1.9.1 Motor encoder with initiator at round table

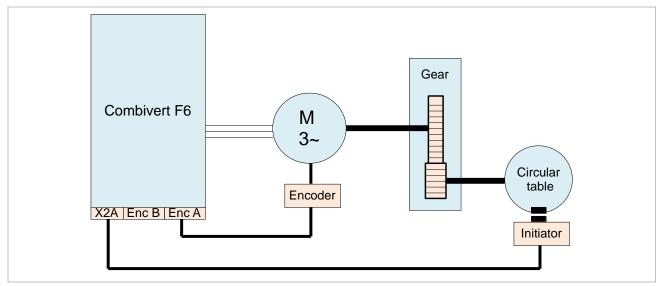


Figure 31: Motor encoder with initiator at round table

In this example the value range of the round table is monitored only by an initiator. A non-integer gear factor can be compensated.

A possibly existing backlash should be considered that the positions can be approached only with a fixed direction of rotation (ps33 = 2 or 3).

Combivert F6 M 3~ Circular table Encoder Encoder

4.8.1.9.2 Motor encoder with encoder and initiator at rotary table

Figure 32: Motor encoder with encoder and initiator at rotary table

This is the most complex configuration. There are all possibilities. Backlash can be compensated.

4.8.1.9.3 Operation with motor model and encoder with initiator at rotary table

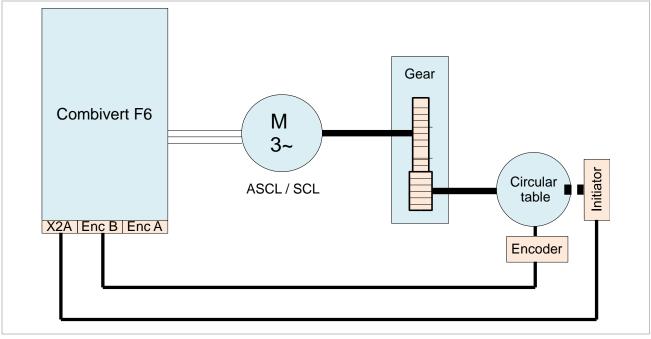


Figure 33: Operation with motor model and encoder with initiator at rotary table

In this example for operation with motor model there is no encoder required at the motor, nevertheless the possibility to compensate backlash is also given here.

4.8.2 Operating mode 2: Velocity mode

The target speed is preset by the superior control in operating mode "Velocity mode". Generation of the speed profile and the speed control circuit are located in the drive. The following figure shows the principle function.

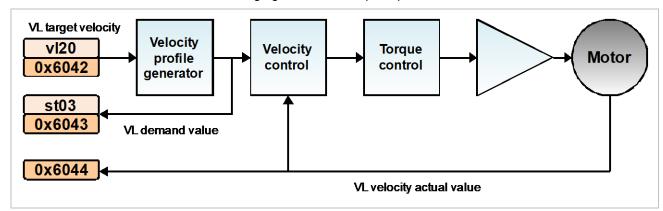


Figure 34: Velocity mode - overview

The yellow elements indicate the KEB specific objects, the orange-colored objects indicate the appropriate objects of the CiA402 profile.

The function of the individual objects can be influenced by different other function blocks. The following figure shows a detailed description of the operating mode.

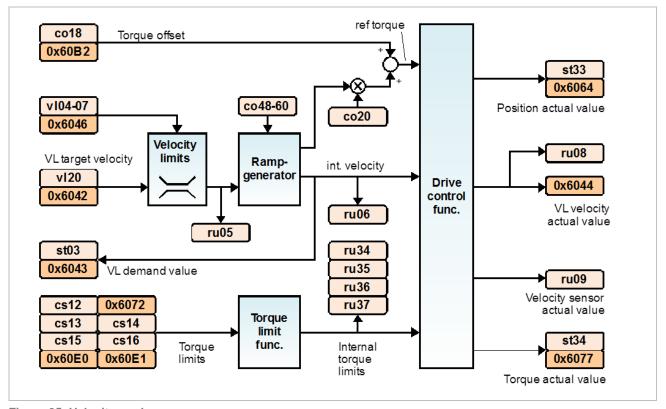


Figure 35: Velocity mode

4.8.2.1 Set speed setting

The target speed is preset via vI20 vI target velocity. The resolution is 1 rpm.

Index	Id-Text	Name	Function
0x2314	vl20	vi torget velecity	Setting the target speed
0x6042		vl target velocity	Resolution 1 rpm

The target speed can be preset with higher resolution with vI21. This object is not defined according to CiA402

Index	Id-Text	Name	Function
0x2315	vl21	target velocity high res	Setting the target speed Resolution: 1/8192 rpm = 0.000122 rpm

Parameters vi20 and vi21 are added to a common target speed.

4.8.2.2 Target speed limitation

The target speed is limited in the function block Velocity limits. The settings are made via the following objects.

Index	Id-Text	Name	Function
0x2304	vI04	vl velocity min amount for	Minimum speed in FOR direction of rotation (pos. speeds)
0x2305	vI05	vl velocity max amount for	Maximum speed in FOR direction of rotation (pos. speeds)
0x2306	vl06	vl velocity min amount rev	Minimum speed in REV direction of rotation (neg. speeds)
0x2307	vI07	vl velocity max amount rev	Maximum speed in REV direction of rotation (neg.
UX23U1	VIU7	vi velocity max amount rev	speeds)□

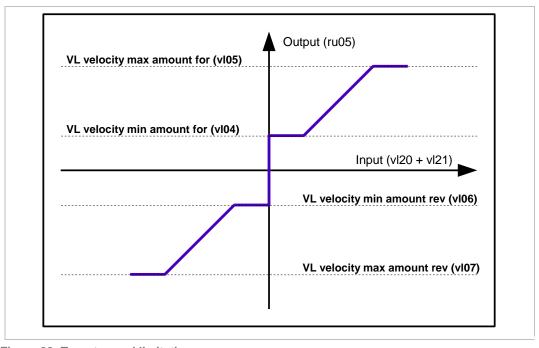


Figure 36: Target speed limitation

4.8.2.3 Controlword in the velocity mode

The properties of some controlword bits depend on the operation mode. In velocity mode they are defined as follows:

co00	(CiA 0x6040) cont	(CiA 0x6040) controlword	
Bit	Name	Note	
4	anabla rama	0: Ramp output is always 0	
4	enable ramp	1: Ramp generator is active	
5		0: Ramp output is "frozen"	
3	unlock ramp	1: Ramp generator is active	
6	reference ramp	0: Ramp input is always zero	
0	reference ramp	1: Setpoint is valid	
8	Halt	0: Setpoint is valid	
0	Halt	1: Ramp input is always zero	

Bits 4...6 and 8 are not supported in the controlword in software version 2.1.

They can be used from version 2.2. Since this causes significant function changes in the vI mode, this bits must be activated for compatibility reasons with bit 8 "enable vI ramp options" in co32 state machine properties.

4.8.2.4 Ramp generator

The ramp generator supports linear ramps and those with linearly increasing acceleration (s-curves). Furthermore the behaviour can be parameterized flexible when changing the direction of rotation.

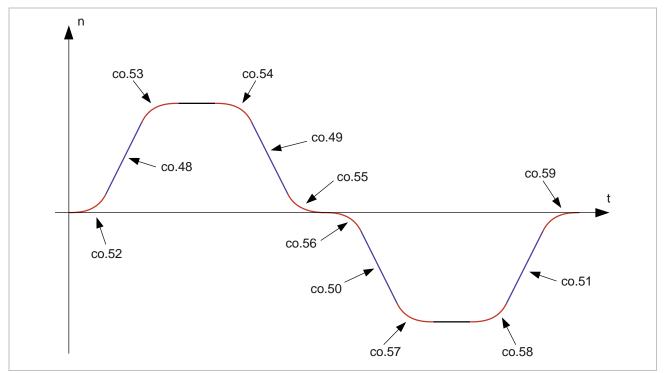


Figure 37: Ramp generator

4.8.2.4.1 Maximum acceleration / deceleration

The maximum acceleration or deceleration is parameterized via the following objects. The resolution of the values is $1/100 \text{ s}^{-2} = 0.01 \text{ s}^{-2}$.

Index	Id-Text	Name	Function
0x2530	co48	acceleration for [s-2]	Maximum acceleration at FOR direction of rotation (pos. speeds)
0x2531	co49	deceleration for [s-2]	Maximum deceleration at FOR direction of rotation (pos. speeds)
0x2532	co50	acceleration rev [s-2]	Maximum acceleration at REV direction of rotation (neg. speeds)
0x2533	co51	deceleration rev [s-2]	Maximum deceleration at REV direction of rotation (neg. speeds)

Example:

Which acceleration is present, when a drive accelerates in 1s from 0 to 1000 rpm?

$$a = \Delta n/\Delta t = 1000 / 60 s^{-1} / 1 s^{-1} = 16.67 s^{-2}$$

4.8.2.4.2 Jerk limiting

The maximum acceleration change (jerk) is parameterized via the following objects. The resolution of the values is $1/100 \text{ s}^{-3} = 0.01 \text{ s}^{-3}$.

Index	Id-Text	Name	Function
0x2534	co52	for acc jerk ls [s-3]	Maximum jerk at acceleration in FOR direction of rotation (low speed)
0x2535	co53	for acc jerk hs [s-3]	Maximum jerk at acceleration in FOR direction of rotation (high speed)
0x2536	co54	for dec jerk hs [s-3]	Maximum jerk at deceleration in FOR direction of rotation (high speed)
0x2537	co55	for dec jerk ls [s-3]	Maximum jerk at deceleration in FOR direction of rotation (low speed)
0x2538	co56	rev acc jerk ls [s-3]	Maximum jerk at acceleration in REV direction of rotation (low speed)
0x2539	co57	rev acc jerk hs [s-3]	Maximum jerk at acceleration in REV direction of rotation (high speed)
0x253A	co58	rev dec jerk hs [s-3]	Maximum jerk at deceleration in REV direction of rotation (high speed)
0x253B	co59	rev dec jerk ls [s-3]	Maximum jerk at deceleration in REV direction of rotation (low speed)

Example:

The acceleration in the previous example should be reached after one second.

 $r = \Delta a/\Delta t$

In our case with constant jerk it is:

 $r = a / t = 16.67s^{-2} / 1s = 16.67 s^{-3}$

4.8.2.4.3 Operating modes of the ramp generator

The behaviour of the ramp generator can be adapted to the requirements of the application via object co60 ramp mode.

Index	Id-Text	Name	Function
0x253C	co60	ramp mode	Operational performance of the ramp generator

The bits in co60 have the following functions:

co60	ramp mode		0x253C
Bit	Function	Value	Function
0	romp type	0: S-curve	S-curves
U	ramp type	1: lin	Linear ramps
		0: sep. para	co48co51
1	linear ramp acc/dec	2: acc for para	co48 is acceleration/deceleration setting for all directions of rotation (only effective if linear ramps are selected, otherwise co48co51) always apply
2	s-curve	0: continuous s-curve	Function 2 and graphic
2	type	4: abort in s-curve	Function => see graphic
3	pass zero	0: not zero	Function -> agg graphic
3	type	8: zero	Function => see graphic
		0: single para setting	The acceleration and deceleration for each direction of rotation is defined separately in the corresponding parameters.
		16: all	The value in co48 defines the acceleration as well as the deceleration for both directions of rotation
4,5	same acc dec	32: dec = acc	The values in co48 and co50 also define the deceleration for the respective direction of rotation. co49 and co51 have no function
		48: rev = for	The values in co48 and co49 also define the acceleration or deceleration for the reverse direction of rotation.co50 and co51 have no function
		64: all	The value in co52 determines all jerk values. Parameters co53co59 have no function
67	same jerk	128: acc and dec	co52 for acc jerk ls [s-3] defines all acceleration jerk values, co54 for dec jerk hs [s-3] defines all deceleration jerk values. co53 and co55co59 have no function.
		192: rev = for	The four jerk values for the reverse direction of rotation are taken over from the forward direction of rotation. co56co59 have no function

continuous S-curve: Actual acceleration is changed with actual jerk to the new setpoint. There is no jump in the acceleration.

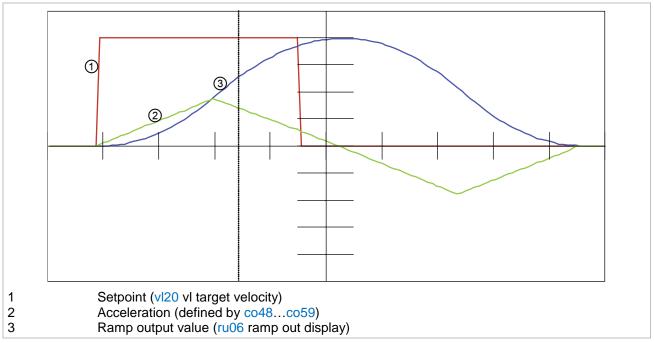


Figure 38: s-curve type = 0: continuous s-curve

abort in S-curve: The actual acceleration is immediately limited to 0 if the setpoint is lower than the actual value. In acceleration there is a jump to 0 at this point.

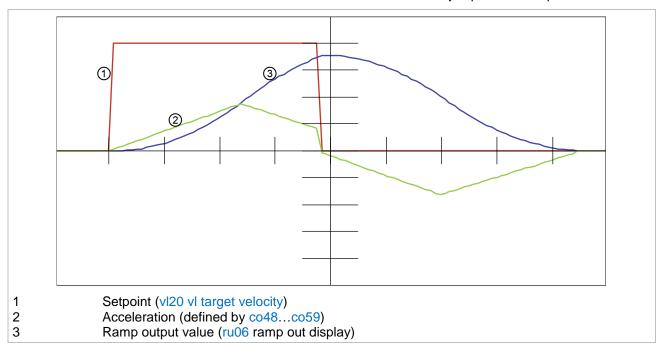


Figure 39: s-curve type = 4: abort in s-curve

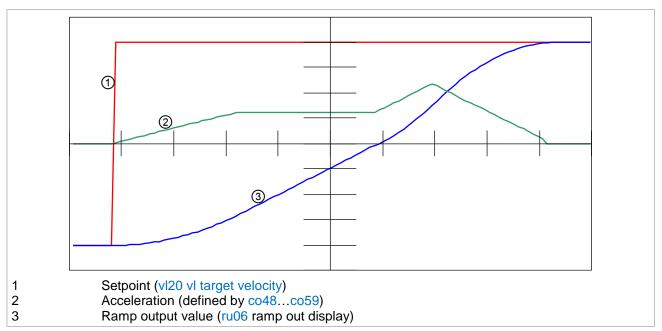


Figure 40: pass zero type = 0: not zero

The acceleration remains on the actual value, if the ramp output changes the sign. If the acceleration, as in this example, has a different value in the other direction, the acceleration changes with the actual jerk to the new value.

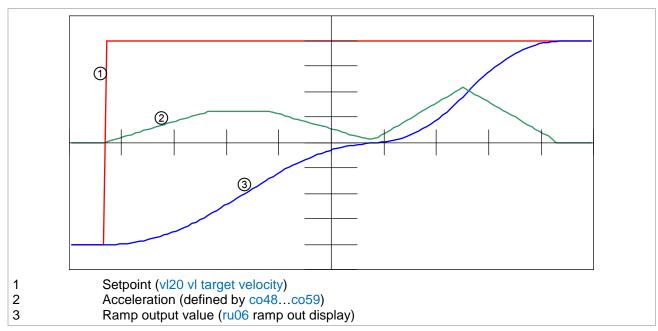


Figure 41: pass zero type = 8: zero

The acceleration is reduced to 0 when the ramp output changes the sign.

Calculation example with timing

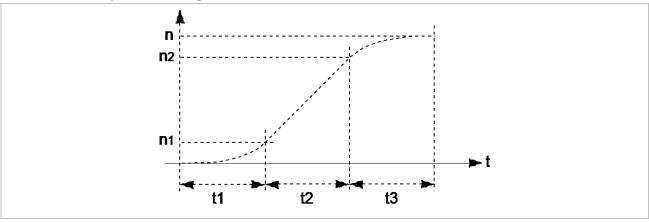


Figure 42: Calculation example

Setting of an acceleration profile according to Figure 42. The setpoint speed n is known as well as the three periods t_1 , t_2 and t_3 .

$$n = 1000 \text{rpm} = 16.67 \text{ s}^{-1}, t_1 = 1 \text{ s}, t_2 = 2 \text{ s}, t_3 = 3 \text{ s}$$

Calculate the constant acceleration a in the second period t2:

$$a = \frac{n}{\frac{t_1}{2} + t_2 + \frac{t_3}{2}} \qquad a = \frac{16.67s^{-1}}{\frac{1s}{2} + 2s + \frac{3s}{2}} = 4.17s^{-2}$$

The resulting value for the acceleration is entered in co48.

Calculation of the jerk r₁ in the first period t₁:

$$r1 = \frac{a}{t_1}$$
 $r1 = \frac{4.17s^{-2}}{1s} = 4.17s^{-3}$

The calculated value for the jerk r1 can be adjusted in co52.

Calculation of the jerk r_3 in the third period t_3 :

$$r3 = \frac{a}{t^3}$$
 $r1 = \frac{4.17s^{-2}}{3s} = 1.39s^{-3}$

The calculated value for the jerk r3 can be adjusted in co53. For the sake of completeness, when you want, calculate the speeds n₁ and n₂ at the changes:

$$n1 = \frac{a*t1}{2} \qquad \qquad n1 = \frac{4.17s^{-2}*1s}{2} = 2.08s^{-1}$$

$$n2 = n1 + a * t2$$

 $n2 = 2.08s - 1 + 4.17s - 2 * 2s = 10.42s - 1$

The formulas are also valid for the case if there is no constant acceleration. Then there is no smooth transition of the s-curves. In this case t_2 is 0.

4.8.3 Operating mode 6: Homing mode

The homing mode is completely implemented according to IEC 61800-7-200 (document 22G/184/FDIS, chapter 11).

In principle, a distinction is made between master-based and slave-based homing.

With master-based homing, the drive is moved to the required position in any operating mode. Then the actual position is overwritten with the value of hm00 (CiA 0x607C) home offset. Thereby e.g. through the Touch probe function, the actual function can be scanned by a digital input or at a zero signal of the encoder. The master can read out and evaluate this information via hm12 and hm13.

In slave-based homing, the inverter searches independently for the home position.

The required homing method is first selected under hm01 (CiA 0x6098) homing method. Method 35 "on current position" is preset, which overwrites only the actual position with the position in hm00. Only this method can be used for master-based homing. All other methods are slave-based homing.

The inverter must be in operating mode 6 "Homing" to start the homing mode.

The homing mode is started by the positive edge with setting bit 4 in the control word. (Op. Mode spec. 1 / homing operation start).

In the example with method 35, the actual position is now directly overwritten with the homing offset. Then the homing mode is completed by resetting bit 4 in the control word.

Bit13	Bit12	Bit10	Definition	
0	0	0	Homing procedure is in process	
0	0	1	Homing procedure is interrupted or not started	
0	1	0	Homing is attained, but target is not reached	
0	1	1	Homing procedure is completed successfully	
1	0	0	Homing error occurred, velocity is not 0	
1	0	1	Homing error occurred, velocity is 0	
1	1	Х	reserved	

Bits 10 (target reached), 12 (homing attained) und 13 (homing error) are set in the status word by the homing mode.

Error-free homing is stored internally and can be monitored via the switching condition 54 "Homing done" (e.g. via a digital output).

4.8.3.1 Controlword in the homing mode

co00	(CiA 0x6040) controlword 0x250			
Bit	Name	Note		
0	Switch on			
1	Enable voltage	State machine		
2	no quick stop	Otate machine		
3	Enable operation	1		
4	Start Homing Starts the zero search			
56	reserved			
7	Fault reset	Fault reset		
8	Halt Sets setpoint 0, finishes a zero search			
914	Operation mode specific Manufacturer-specific, without function			
15	Open brake Manufacturer-specific, 1 opens the motor brake (depending on co21 brake control mode)			

4.8.3.2 Homing Offset

A position offset is internally calculated immediately with exiting the homing mode, thus the same value which is preset in the homing offset also is set in the actual position (st33 position actual value).

This once calculated value is stored non-volatile in hm09 position offset.

Thus the absolute position (multiturn) can be reset also at power-on along with an absolute value encoder (singleturn), provided the drive will not be moved in switched off state.

hm09 position offset can also be written. Thus referencing in other operating modes is also possible, respectively it is not necessary to change into operating mode homing. The value in hm09 is also modified by internal functions such as (e.g.) ps18 and ps19.

4.8.3.3 Digital inputs

The digital inputs can be assigned in any order to the homing functions:

Index	Id-Text	Name	Function
0x3105	hm05	digital inputs	Overview of the function selected by digital inputs
0x3106	hm06	negative limit switch source	Input selection for the negative limit switch
0x3107	hm07	positive limit switch source	Input selection for the positive limit switch
0x3108	hm08	home switch source	Input selection for the homing switch
0x310E	hm14	homing mode source	Input selection for direct activation of the homing mode with digital input.

The inputs for the limit switches are 0-active, i.e. value 0 for a limit switch input means that the drive is located on the limit switch. The homing switch is 1-active.

4.8.3.4 Setpoint speeds and ramps

The setpoint speed to start the homing function is preset with hm02 (CiA 0x6099 [1]) speed during search for switch.

The setpoint speed on driving free of the home switch is set in hm03 (CiA 0x6099 [2]) speed during search for zero.

Index	Sub- Idx	ld-Text	Name	Function
0x3102 0x6099	0	hm02	(CiA 0x6099 [1]) speed during search for switch homing speeds [1]	Homing function starts with set- point speed
0x3103	0	hm03	(CiA 0x6099 [2]) speed during search for	Setpoint speed on driving free
0x6099	2		zero homing speeds [2]	of the home switch
0x3104		hm04	(CiA 0x609A) homing acceleration	Adjustment of the ramps in the
0x609A		111104	homing acceleration [s-2]	homing mode

4.8.3.5 Homing methods

Index	Id-Text	Name	Function
0x3101	hm01	(CiA 0x6098) homing method	Selection of the zero point search

The limit switches are always activated at slave-based homing. A setpoint is only enabled if the corresponding limit switch is also set.

The logic of the digital inputs can be adjusted with di00 thereby a test operation of the homing functions is also possible.

4.8.3.5.1 Method 1 (17) Homing to the negative limit switch and zero track

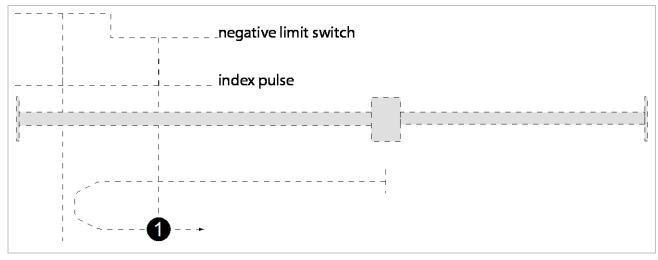


Figure 43: Homing - Method 1

Method 1 is started first with negative direction of rotation with the adjusted setpoint in hm02 (as shown in the figure above).

On driving to the negative limit switch, the drive reverses and drives free the limit switch with the adjusted setpoint in hm03.

Then the drive moves to the next zero signal of the encoder.

At this point the drive stops and the homing offset is transferred to the actual position.

Method 17 corresponds to method 1, but without zero signal search.

4.8.3.5.2 Method 2 (18) Homing to the positive limit switch and zero track

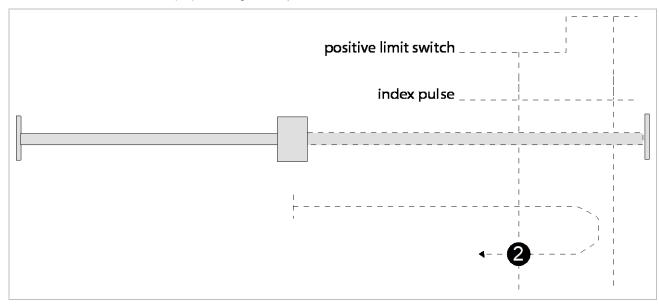


Figure 44: Homing – Method 2

4.8.3.5.3 Method 3 and 4 (19,20) Homing to the positive home switch and zero track

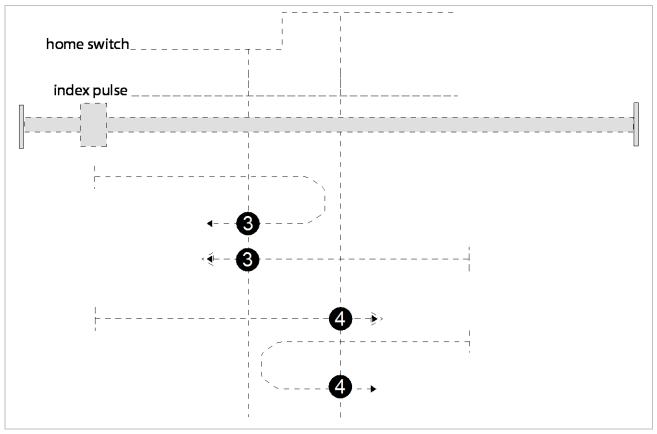


Figure 45: Homing – Method 3 and 4

4.8.3.5.4 Method 5 and 6 (21, 22) Homing to the negative home switch and zero track

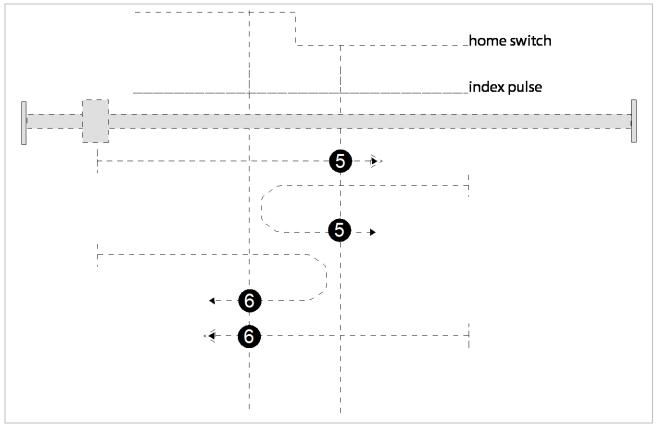


Figure 46: Homing – Method 5 and 6

4.8.3.5.5 Method 7 up to 14 (23...26) Homing to the home switch and zero track

Figure 47: Homing – Method 7 to 14 (23 to 26)

4.8.3.5.6 Method 17 up to 30 Homing without zero track

These methods behave exactly like methods 1 to 14, except that the zero signal of the encoder is not considered.

4.8.3.5.7 Method 33 and 34 Homing to the zero track

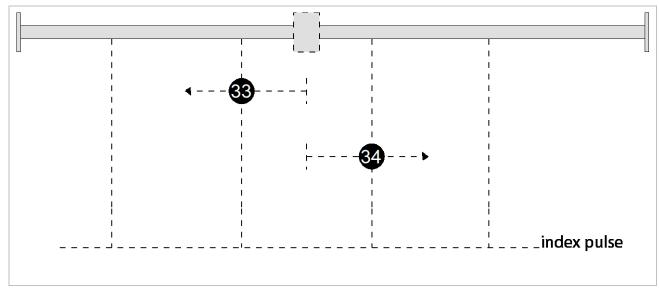


Figure 48: Homing – Method 33 and 34

4.8.3.5.8 Method 35 Homing at actual position

With this method, the drive does not move. The actual position is only overwritten by the position value in hm00.

4.8.3.6	Zero signa	loffset
---------	------------	---------

Index	Id-Text	Name	Function
0x3115	hm21	zero point distance	Distance needed for the last zero point search. The optimum is always a half revolution (32768 increments). The sign indicates the direction of rotation.
0x3116	hm22	zero point offset	Offset to correct the next zero point search. +/- half a revolution can be corrected. With the value "-32768: auto" the optimal value for hm22 is automatically calculated from the measured value in hm21.
0x3117	hm23	homing options	Options for homing.

The additional referencing to the zero signal of the encoder increases the reproducibility of the reference position after homing (homing methods 1...16). This requires that the encoder is mechanically aligned to the reference limit switch so that the zero signal is about half a revolution next to the edge of the reference limit switch.

In addition to mechanical alignment, this adjustment can also be carried out by software. For this purpose, the distance between the edge of the reference limit switch and the edge of the zero signal is measured first. This distance is displayed in hm21 zero point distance.

Via hm22 zero point offset a value can now be preset to correct the zero signal.

With the setting "-32768: auto" the optimal value for the shifting of the virtual zero pulse is automatically calculated from the position distance in hm21.

Bit 0 check zero point offset in hm23 homing options has the following function:

hm23	homing options 0x3117			
Bit	Function Value Function			
0	o check zero point offset	0 : off	Check the zero signal position to the reference limit switch. Min. 1/3 revolution, max. 2/3 revolution. Homing is not posi-	
0		1 : on	tively acknowledged if the condition is	

4.8.3.7 Homing done

Error-free homing is stored internally and can be evaluated via the switching condition 54 "Homing done".

If the value of a parameter relevant for homing is changed (co03, co04, co08), Homing done is deleted.

An encoder error of the encoder selected by co04 also deletes Homing done.

After power-on, homing done is always 0.

4.8.3.8 Touch probe

The Touch probe is available in all operating modes. The function and the digital inputs are sampled with the time adjusted by is22. With a digital input or when passing the zero signal from the current position encoder, the actual position can be stored edge-dependent in hm12 or hm13.

The digital inputs I1...I4 are selectable for the touch probe.

The status of the function is displayed in hm11:

The respective operating mode is adjusted via hm10.

hm10	(CiA 0x60B8) touch probe function 0x310A 0x60B8				
Bit	Function	Valu e	Plaintext	Notes	
0	touch	0	off	Switching off the touch probe function	n
U	probe 1	1	enable	Activation of the touch probe function	ı
1	1 trigger		first event Unique storing of the position with an edge of probe signal in hm12 or hm13. Automatic de the function after the edge.		
	2	continous	The actual position is stored in hm12 edge of the touch probe signal	2 or hm13 with each	
			touch probe 1	Digital input I1 serves as touch probe The position of a positive edge is sto sition of a negative edge is stored in	red in hm12, the po-
2,3 sourc	source	4	zero sig- nal of po- sition en- coder	Zero signal of position encoder serve signal. The position for forward direction is serverse direction position is stored in	stored in hm12, the
		8	source 0x60D0	The source for the touch probe can be object 0x60D0.	oe selected via the

hm10	(CiA 0x60B8) touch probe function 0x310A 0x60B8												
Bit	Function Valu Plaintext Notes e												
4	4 positive edge	0	switch off sampling	Sampling deactivated, no new values are taken over in hm12.									
4		edge	edge	edge	edge	edge	edge	edge	edge	edge	16	enable sampling	Sampling activated, with positive edgover in hm12.
_	5 negative edge	0	switch off sampling	Sampling deactivated, no new value hm13.	s are taken over in								
5		32	enable sampling	Sampling activated, with negative ed over in hm13.	lges values are taken								

	touch probe source	touch probe source		
Value	Plaintext Notes			
1	Digital input I1 is used for touch probe 1.			
2	I2 Digital input I2 is used for touch probe 1.			
3	I3 Digital input I3 is used for touch probe 1.			
4	I4 Digital input I4 is used for touch probe 1.			
5	zero signal of position encoder is used for the touch probe.		used for the touch	

hm11	(CiA 0x60B9) touch probe status 0x310B 0x60B9					
Bit	Function	Value	Plaintext	Notes		
			switched off	Function deactivated		
0 state		1	enabled	Function waits for edge fronal	om touch probe sig-	
1	positive edge	ositive edge 2 positive edge stored Positive edge at the digital input or zero impulse at forward direction of rotation was rognized and position stored in hm12		of rotation was rec-		
2	negative edge	4	negative edge stored	Negative edge at the digit pulse at reverse direction ognized and position store	of rotation was rec-	

4.8.4 Cyclic referencing

4.8.4.1 Cyclic referencing with digital input

The value range of the rotary table can be referenced when passing the defined home switch by hm08 home switch source. Thereby the positive edge of the initiator is selected at positive direction and the negative edge at negative direction.

This function is activated by presetting a value unequal zero in ps20 range ref window.

The referencing is only executed if the edge is in the defined window by ps20. At valid edge the internal position offset hm09 is modified by way that the actual position st33 position actual value is assigned to the preset reference value set with hm00 (CiA 0x607C) home offset at triggering edge.

Contrary an error counter is increased in ps21 if the window defined in ps20 range ref window is passed without recognizing an initiator. The error counter is reset again with valid initiator.

The homing mode with method 18 is reasonable for the first referencing to reach the same mechanical position which is used also for the cyclic referencing.

4.8.4.2 Automatic cyclic referencing

If a systematic error occurs due to an odd gear factor, it can be corrected automatically. The following two objects are installed for this purpose.

Index	ld-Text	Name	Function
0x2E17	ps23	position range periods	Number of periods of the rotary table value range which must be passed through to carry out the adjusted correction in ps24.
0x2E18	ps24	range correction	Correction in increments to be performed.

Example:

A drive shall operate a rotary table via a 7/9 gearbox and a toothed belt with gear ratio 1/13. For 7 rotations of the rotary table, the motor must rotate 9 * 13 = 117 times

The encoder is mounted on the motor, so the position is specified as motor position.

The total gear ratio results to:
$$\frac{7}{9*13} = \frac{7}{117}$$

One revolution of the rotary table = 117 / 7 = 16.714 motor revilutions.

If the position scaling is set to 1 revolution = 16 Bit = 65536 ($\cos 3$ = 16), the rotary table range (ps19 (CiA 0x607B [2]) max position range limit – ps18 (CiA 0x607B [1]) min position range limit) is calculated to:

$$\frac{65536 * 117}{7} = 1.095.387,429$$

The decimal places must be omitted, since the rotary table value range can only be entered in whole numbers. The rotary table range ps19 ... ps18 is therefore 1,095,387.

Due to this inaccuracy, an error adds up if the drive runs endlessly in one direction.

After 117 motor revolutions the real position difference is 117 * 65536 = 7667712

According to the definition of the rotary table area (by the rounding) the position difference after 7 revolutions should be = 7 * 1,095,387 = 7667709.

The difference between the real rotary table position after 7 rotary table rotations is: 7667712 - 7667709 = 3 increments.

A correction with 3 increments must be done after 7 revolutions at the rotary table.

This results in the setting ps23 = 7 and ps24 = 3

The higher the position resolution (co03) is selected, the lower the error and thus the correction value. Therefore at least $co03 = 16 \Rightarrow 1$ revolution corresponds to 65536 should be used.

4.8.5 Operating mode 8: Cyclic synchronous position mode

In operating mode "cyclic synchronous position mode", position setpoints are cyclically preset by the superior control. The superior control calculates the position profile, the position control circuit is at the motor.

The following figure shows the principle function.

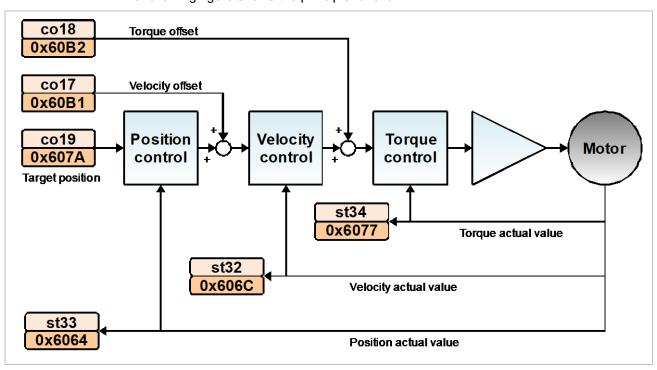


Figure 49: Cyclic synchronous position mode - overview

The yellow elements indicate the KEB specific objects, the orange-colored objects indicate the appropriate objects of the CiA402 profile.

The function of the individual objects can be influenced by different other function blocks. The following figure shows a detailed description of the operating mode.

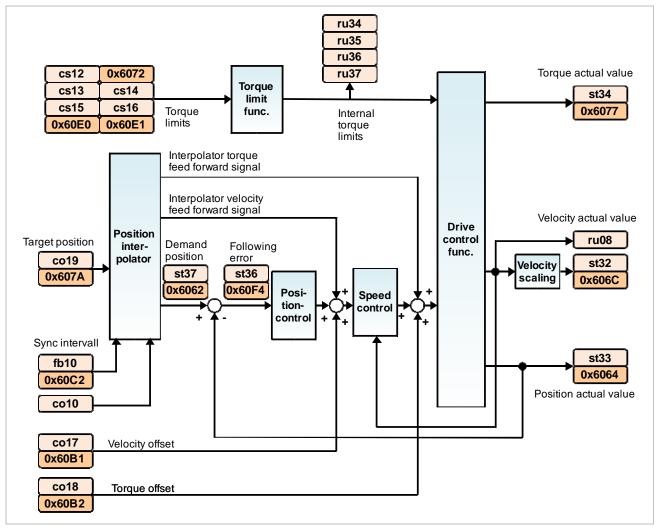


Figure 50: Cyclic synchronous position mode

The position setpoints are preset via the object co19.

Index	Id-Text	Name	Function
0x2513	co19	(CiA 0x607A) target position	Procetting the set position
0x607A		target position	Presetting the set position

Then the position setpoints are interpolated to the cycle time of the internal control grid. The used method can be selected via the object co10.

Index	Id-Text	Name	Function
0x250A	co10	position interpolator	Determines the used interpolation method

co10	position inte	rpolator	0x250A	
Bit	Function	Value	Plaintext	Notes
0 3	o a interpola-	0	Linear 2 points external pre con- trol	Linear interpolation of the position, precontrol can be done externally via co17 and co18.
03	tor mode	13		reserved
			B-Spline (n points)	B-spline interpolation via the last n points
4	init	0	init actual value	Initialization with actual values
4	11111	16	init target value	Initialization with setpoints

The values of co10 have the following meaning:

The interpolation results in a signal delay, which is calculated as follows:

Deceleration = cycle time (fb10) * (number of calculation points (co10) – 1)

Formula 1: Signal delay by interpolation

Example:

With a cycle time of 1ms and B-spline interpolation of 4 points, there is a delay of 1ms * (4-1) = 3ms.

The setpoint speed and the required set torque are directly derived from the set positions. The values are directly interpolated to the 250us grid of position and speed controller.

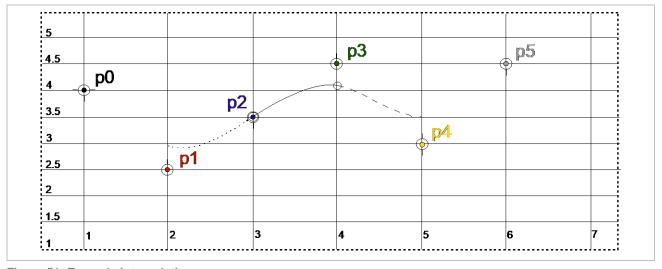


Figure 51: Example interpolation

If the number of grid points is increased withco10, possible errors in the set profile will be compensated better, but the set profile is also slightly straightened thereby.

Due to the minimum required 4 points, the position setpoint is delayed by the triple cycle time in fb10. The cycle time is three times between the 4 points. Each additional point corresponds to a delay of another cycle time in fb10.

However, the three control loops for position, speed and current are closed behind the interpolation. Thus the parameterization of co10 does not have any effects on the three control circuits.

At least four points are necessary since the precontrol values for speed and acceleration are calculated from the position setpoints by two-fold differentiation.

The type of initialization of the interpolator is selected with bit 4 in co10.

The setting "actual value" is favourable, if the mode change shall be made at standstill.

Value 16 "target value" should be selected if the operating mode shall be changed during operation.

For initialization with setpoints, new setpoints must be preset via co19 even before mode changeover. The number of setpoints, which must be preset at least before, is depending on co10: Number of setpoints = number of points -1.

That means: if co10 = 5 "B-Spline, 5 points average", the setpoint must be written 4-times to co19 before mode changeover.

The function blocks torque limiting and selection of the torque offset are described in chapter 4.8.8

4.8.5.1 Position precontrol

In the Cyclic Sync Position Mode, the spline interpolator causes a temporal shift between the position setting by the higher-level control co19 (CiA 0x607A) target position and the actual set position for the motor ((CiA 0x6062) st37 demand position).

The time is made up from the process data communication and the setting of fb10 and co10.

This is a known time and it can be set for all axes. Then the track profiles are processed exactly synchronously on all axes with this constant deceleration.

If desired, the position offset between co19 and st37 can be corrected. Thus the driving profile has been slightly modified.

Index	Id-Text	Name	Function
0x250D	co13	pos. pre control	Position precontrol [us]

The value for co13 can be determined as follow.

The points of the interpolator in co10 are halved multiplied with fb10. Approx. one clock of fb10 must be considered as deceleration for the process data communication.

Example: co10 = 4: B-Spline, 4points avg + actual value fb10 = 1 ms => $co13 \approx 0.5 * 4$ ms + 1ms $\approx 2500 \mu$ s...3000 μ s

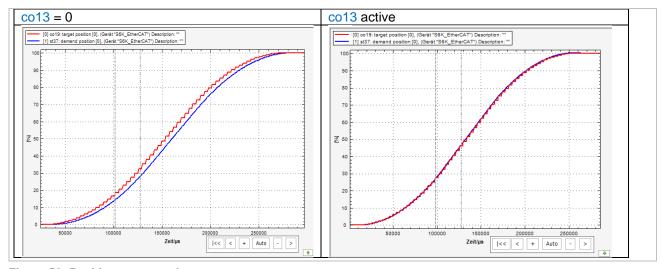


Figure 52: Position precontrol

4.8.5.2 Status displays

In cyclic synchronous position mode, bit 11 and 12 are set op mode-dependent in the statusword (0X2100 st00 / 0x6040).

st00	(CiA 0x604)	1) statusword	0x2100
Bit	Name	Note	
11	internal limit ac- tive	This can be caused either by reaching of a torque or current or hardware-dependent).	limit (parameterized
12	drive fol- lows com- mand value	Value 0: The drive does not follow the specification of target Value 1: The drive follows the setpoint setting of target posit	•

4.8.6 Operating mode 9: Cyclic synchronous velocity mode

4.8.6.1 General description

In operating mode "cyclic synchronous position mode", speed setpoints are cyclically preset by the superior control.

The position control is in the superior control and calculates the speed settings from the target position and the actual position, which is read by the drive.

The following figure shows the principle function.

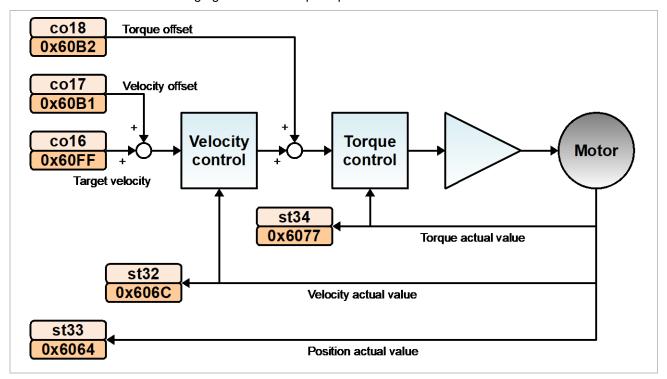


Figure 53: Cyclic synchronous velocity mode - principle

The yellow elements indicate the KEB specific objects, the orange-colored objects indicate the appropriate objects of the CiA402 profile.

The function of the individual objects can be influenced by different other function blocks. The following figure shows a detailed description of the operating mode.

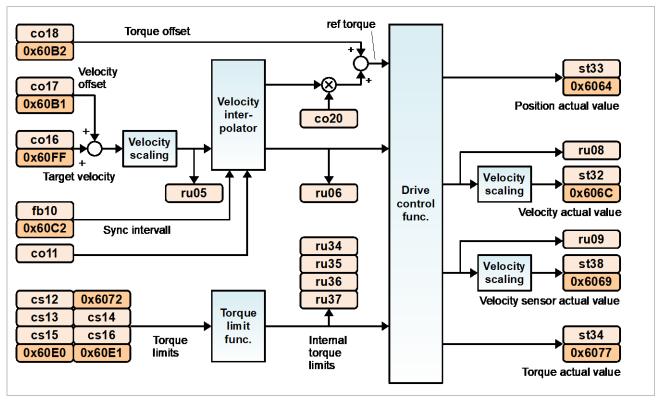


Figure 54: Cyclic synchronous velocity mode

4.8.6.2 Speed settings

The speed setpoints are preset via the objects co16 and co17.

Index	Id-Text	Name	Function
0x2510	co16	(CiA 0x60FF) target velocity	Catting the cotpoint around
0x60FF		target velocity	Setting the setpoint speed
0x2511	co17	(CiA 0x60B1) velocity offset	le added to target valenity
0x60B1		velocity offset	Is added to target velocity

The resolution of these objects is depending on the adjusted speed scaling. This is adjusted via co02 velocity shift factor.

Index	Id-Text	Name	Function
0x2502	co02	velocity shift factor	Determination of the speed resolution for setpoints and actual values in co, st and pr parameters in the cyclic operating modes.

The values of co02 have the following meaning:

co02	velocity	shift factor	0x2502		
Value	Name	Function	Value	Name	Function
0	13 bit	Resolution 13 Bit = 1/8192 rpm	7	6 bit	Resolution 6 Bit = 1/64 rpm
1	12 bit	Resolution 12 Bit = 1/4096 rpm	8	5 bit	Resolution 5 Bit = 1/32 rpm
2	11 bit	Resolution 11 Bit = 1/2048 rpm	9	4 bit	Resolution 4 Bit = 1/16 rpm
3	10 bit	Resolution 10 Bit = 1/1024 rpm	10	3 bit	Resolution 3 Bit = 1/8 rpm
4	9 bit	Resolution 9 Bit = 1/512 rpm	11	2 bit	Resolution 2 Bit = 1/4 rpm
5	8 bit	Resolution 8 Bit = 1/256 rpm	12	1 bit	Resolution 1 Bit = 1/2 rpm
6	7 bit	Resolution 7 Bit = 1/128 rpm	13	0 bit	Resolution 0 Bit = 1 rpm

Internally all speed values with a resolution of 1/8192 rpm are displayed.

The following objects of the defined resolution in co02 are adapted in all operating modes. 0x606B velocity demand und 0x2120, 0x606c st32 velocity actual value.

4.8.6.3 Interpolator

Then the speed setpoints are interpolated to the cycle time of the internal control grid. The used method can be selected via the object co11.

Index	Id-Text	Name	Function
0x250B	co11	velocity interpolator	

The values of co11 have the following meaning:

co11	velocity inte	rpolator			0x250B	
Bit	Function	Value	Plaintext	Notes		
		0	linear, 2 points avg	Linear interpolation between the last two values		
03	interpola- tor mode	1	no interpolation	Direct acceptance of the setpoint		
	tor mode	2	reserved			
		315	B-spline, n points avg	B-spline interpolation	via the last n points	
4	: :4	0	actual value	Initialization with actual values		
4	init	16	target value	Initialization with setpo	pints	

The interpolation results in a signal delay, which is calculated as follows:

Deceleration = cycle time (fb10) * (number of calculation points (co11) – 1)

Example:

With a cycle time of 2ms and B-spline interpolation of 4 points, there is a delay of 2ms * (4-1) = 6ms.

Additionally to the interpolated speed setpoint, the speed interpolator also generates the corresponding torque profile.

4.8.6.4 Torque limiting and precontrol

The function blocks **torque limiting** and **torque precontrol** are described in chapter 4.8.9 Operating mode-independent functions

4.8.6.5 Status displays

In cyclic synchronous mode, bit 11 and 12 are set op mode-dependent in the statusword (0X2100 st00 / 0x6040).

st00	(CiA 0x604)	1) statusword	0x2100
Bit	Name	Note	
11	internal limit ac- tive	This can be caused either by reaching of a torque or current or hardware-dependent).	limit (parameterized
12	drive fol- lows com- mand value	Value 0: The drive does <i>not</i> follow the setting of target velocity Value 1: The drive follows the setpoint setting of target velocity.	

4.8.7 Operating mode 10: Cyclic synchronous torque mode

4.8.7.1 General description

In cyclic sync torque mode, new set torque settings are transferred to the drive controller by a higher-level control with each bus cycle. The Drive Controller does not calculate any acceleration or deceleration ramps, it only follows the torque settings from the control. The target torque is transmitted via the process data channel (PDO).

Torque control is not possible in v/f operation.

Figure 55: Cyclic synchronous torque mode - Overview

4.8.7.2 Interpolator

The setpoint is interpolated to the cycle time of the internal control grid. The used method can be selected via the object co10.

Index	Id-Text	Name	Function
0x250A	co12	torque interpolator	Interpolation of the torque setpoint

co12	torque interpolator	torque interpolator		
Value	Name	Note		
0	linear, 2 points avg	Linear interpolation between two values (average value)		
1	no interpolation	Direct acceptance of the torque setpoint		
2	B-spline, 2 points avg	B-spline, from 2 values		
3	B-spline, 3 points avg	B-spline, from 3 values		
15	B-spline, 15 points avg	B-spline, from 15 values		

With col2 = 1: no interpolation", the torque setpoints are directly taken over.

This setting is ideal for the "cyclic synchronous torque mode", because no controller precontrols must be calculated in this mode and only the fastest possible reaction of the drive to the setpoint is important.

4.8.7.3 Setpoint setting

The torque setpoints are specified via object co15.

Index	Id-Text	Name	Function
0x250F	co15	(CiA 0x6071) target torque	Setting of the setpoint torque to the spline interpola-
0x6071		target torque	tor

This parameter can be used to specify a torque offset value. This value is added directly to the interpolator output value.

Index	Id-Text	Name	Function
0x2512	co18	(CiA 0x60B2) torque offset	Setting of the torque offset
0x60B2		torque offset	Setting of the torque offset

The resolution of co15 and co18 is defined via co84 torque resolution. (Description which parameters are affected by this parameter, see chapter 4.8.7.4 Torque resolution)

The value calculated from target torque and torque offset passes through subsequently the torque limiting block (see chapter 4.8.7.5 Limitation of the torque setting).

The resulting torque setpoint can be smoothed with a PT1 filter. (See chapter 6.3.7 Speed controller PT1 output filter)

Index	Id-Text	Name	Function
0x2714	cs20	torque ref. Pt1-time	Pt1 time torque reference

The active setpoint for torque control is displayed in ru23

Index	Id-Text	Name	Function
0x2C17	ru23	reference torque	Control set torque (resolution constant 0.1% rated torque dr09)

4.8.7.4 Torque resolution

Index	Id-Text	Name	Function
0x2554	co84	torque resolution	Setting of the resolution of the torque reference / display

co84	torque resolution 0x2554		
Value	Plaintext	Resolution	Meaning
0	0,1	1/10 dr09	
1	0,05	1/20 dr09	In order to achieve a higher resolution of 1 per mil of
2	0,025	1/40 dr09	the rated torque dr09, the resolution of some parame-
3	0,0125	1/80 dr09	ters can be parameterized via co84
4	0,01	1/100 dr09	

All co / st parameters and some parameters of the pr group are influenced by the variable resolution.

The resolution of the torque limits, in the cs parameters and in the pr parameters, is always constant 0.1% dr09 rated torque.

The resolution of the set torque setting via target torque (0x 250F co15 / 0x6071) and torque offset (0x2512 co18 / 0x60B2) is variable.

The resolution of the display of control set torque and actual torque in the ru parameters (ru23 reference torque and ru24 actual torque) is constant 0.1% dr09 rated torque.

The resolution of the display of the actual torque in 0x2122 st34 / 0x6077 torque actual value is variable.

The following parameters are influenced by co84 torque resolution:

0x250F	0x6071	target torque
0x2512	0x60B2	torque offset
0x2122	0x6077	torque actual value

4.8.7.5 Limitation of the torque setting

The set torque in the cyclic synchronous torque mode is also limited like the output signal of the speed controller in the other modes.

The following still apply

- application-specific limitations (cs12..cs16 bzw. 0x6072, 0x60E0, 0x60E1)
- physical limiting characteristic of the motor (motor data, ds11)
- torque limits resulting from maximum currents (motor data, is parameters, inverter limit values)

4.8.7.6 Actual torque display

The display in the ru parameter group occurs with constant resolution, the resolution in the st and pr parameter group is determined by co84.

Index	Id-Text	Name	Function
0x2C18	ru24	Lactual fordue	Actual torque Resolution constant 0.1% rated torque dr09

Index	Id-Text	Name	Function
0x2122	st34	torque cotuel volue	Actuial torque
0x6077		torque actual value	Resolution defined by co84

4.8.7.7 Status displays

In cyclic synchronous mode, bit 11 and 12 are set op mode-dependent in the statusword (0X2100 st00 / 0x6040).

st00	(CiA 0x604)	1) statusword	0x2100
Bit	Name	Note	
11	internal limit ac- tive	The flag is set if the torque setpoint from co15 (after interpolator) and co18 cannot be reached. This can be caused either by reaching of a torque or current limit (parameterized or hardware-dependent) or by leaving the torque control when an overspeed is detected (see chapter 4.8.7.8 Interception of overspeeds)	
12	drive follows command value Value 0: The drive does <i>not</i> follow the setting of target torque and torque offset Value 1: The drive follows the torque setpoint setting of target torque and torque offset.		·

4.8.7.8 Interception of overspeeds

Parameter 0x6080 max. motor speed forms a superimposed setpoint speed limitation which intervenes directly before the speed controller.

If the counter torque (load torque) is omitted in torque-controlled operation, the drive must not accelerate to any speed.

Therefore, when reaching the parameterized maximum speed 0x6080 max.motor speed it is switched into the speed-controlled mode.

Index	Id-Text	Name	Function
0x6080		max motor speed	Resolution defined by co02 velocity shift factor

The changeover is indicated in statusword bit12 (0: The drive does **not** follow the setting of target torque and torque offset).

The sign of the maximum speed is taken from the sign of the torque setpoint. The signed maximum speed is displayed in parameter ru06 ramp out display.

A changeover of the internal mode from torque-controlled to speed-controlled occurs when the amount of the actual speed is higher than the amount of the maximum speed.

The return from the speed-controlled mode to the selected torque-controlled mode occurs when the actual speed is lower than the setpoint speed (maximum speed).

Furthermore, in the case of a positive set torque (sum of the target torque und torque offset) the torque required to maintain the maximum speed must be higher than the specified set torque. Only if the torque setpoint is lower than the torque required to adjust the speed at the moment, it will be avoided that the drive immediately accelerates beyond the speed limit of max. motor speed. The same applies to reverse direction of rotation.

In torque-controlled mode, the integral part of the Pi speed controller is precharged with *ZERO* if the actual speed and the preset set torque have the same sign.

Telegramm mit Momentensolwert A SyncInterrupt EtherCAT Telegramm KommunikationsInterrupt Werarbeitung durch Spline-Interpolator Werarbeitung durch Spline-In

4.8.7.9 Structure overview

Figure 56: Transfer torque setpoint telegram -> current controller

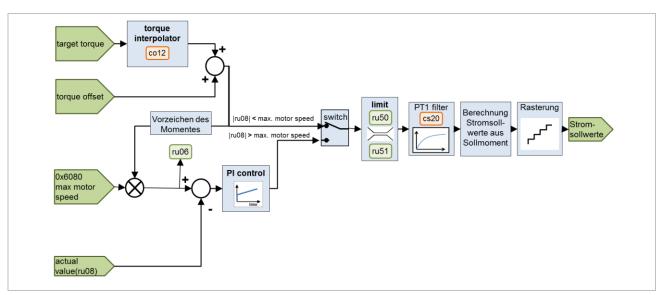


Figure 57: Torque control and overspeed interception

4.8.8 Operating mode -2: jog mode in the cm customer modes group

The drive should be able to be moved at any time, independent of the traversal manner set in automatic mode. For this purpose, an operating mode has been introduced which allows this with appropriate adapted conditions.

A CAUTION

All reactions to configurable errors that do not trigger an error, but only a quick stop (e.g. Disable Operation) are suppressed when the Jog Mode is active!

If an error reaction shall be triggered even when Jog mode is active, settings must be used in the corresponding stop mode parameter ("0: fault" or "1: dec to stop") that also trigger an error.

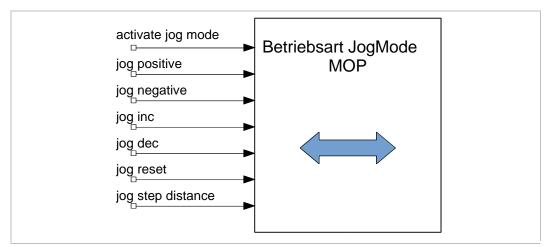


Figure 58: Operating mode jog mode

4.8.8.1 Digital inputs

Definition of digital inputs in jog mode:

Index	Id-Text	Name	Function
0x3B1F	cm31	inc motor poti input	Incrementing the motor poti (MOP) setpoint for the jog mode
0x3B20	cm32	dec motor poti input	Incrementing the motor poti (MOP) setpoint for the jog mode (priority over jog inc MOP input)
0x3B21	cm33	reset motor poti input	Reset the motor poti setpoint to the reset value preset by cm28. (priority over jog inc/dec MOP inputs)
0x3B22	cm34	activate jog mode	Activation of jog mode. Alternatively, this can also be done via the 01 co.modes of operation object. (- 2 : jog mode)
0x3B23	cm35	jog positive	jog mode in positive direction
0x3B24	cm36	jog negative	jog mode in negative direction
0x3B25	cm37	activate jog speed 2	Selection of the second speed

Index	Id-Text	Name	Function
			Selection of the step size limitation in jog mode.
0x3B26	cm38	jog step mode	The setpoint is enabled as long as the preset step distance has not been exceeded.

4.8.8.1.1 Error handling in jog mode

By activating the jog mode via the digital input specified in cm34, any errors that may have occurred are automatically reset once. The two fieldbus errors from pn22 E.fb watchdog and pn23 E.fb heartbeat are not active in jog mode. Hardware limit switches and software limit positions are observed in jog mode, errors which are selectable by pn20 E.SW-switch stop mode, pn78 limit swich forware stop mode and pn79 limit switch reverse stop mode are suppressed.

4.8.8.1.2 Status machine in jog mode

If the jog mode is activated via co01 modes of operation, the status machine is not affected. This must be started via the co00 (CiA 0x6040) controlword. If the input function is used with cm34, the status machine is first briefly reset, then after an error reset the status machine is automatically started up to Operation Enabled. For this the co00 (CiA 0x6040) controlword is internally switched off. If the input of cm34 is deactivated again, the status machine is shut down again. The drive cannot start unintentionally when leaving the jog mode.

4.8.8.1.3 Setpoints

Definition of setpoints in jog mode:

Index	Id-Text	Name	Function
0x3B17	cm23	min limit for motor poti	
0x3B18	cm24	max limit for motor poti	0.00% 100.00%
0x3B19	cm25	min limit rev motor poti	Limitation of the MOP setpoint separately for both directions of rotation.
0x3B1A	cm26	max limit rev motor poti	
0x3B1B	cm27	motor poti ref value	Reference speed to which the 100% value of the MOP function refers. 0128000 rpm
0x3B1C	cm28	motor poti reset value	Reset value of the MOP function in % -100.00% 100.00%
0x3B1D	cm29	motorpoti inc gain [%/s]	Increase of the MOP setpoint when the jog inc MOP input is active in %/s
0x3B1E	cm30	motor poti dec gain [%/s]	Increase of the MOP setpoint when the jog dec MOP input is active in %/s
0x3B29	cm41	jog speed 1 positive	Speed 1 in positive direction of rotation
0x3B2A	cm42	jog speed 1 negative	Speed 1 in negative direction of rotation
0x3B2B	cm43	jog speed 2 positive	Speed 2 in positive direction of rotation
0x3B2C	cm44	jog speed 2 negative	Speed 2 in negative direction of rotation
0x3B2D	cm45	jog step distance	Maximum step distance in jog mode when step size limitation is active.

4.8.8.1.4 Options of the jog mode

Index	Id-Text	Name	Function
0x3B2E	cm46	jog mode options	Options for the jog mode.

The bits in cm46 have the following functions:

cm46	jog mode op	otions		0x3B2E
Bit	Function	Value	Function	
0	limit swich	0 : off	Hardware limit switches in hm06 or hm	07 are ignored.
U	IIIIII SWICII	1 : on	Hardware limit switch active.	
1	sw limit	0 : off	Software end positions in pn18 and pn1	19 are not active.
!	switch	2 : on	Software end positions active.	
		0 : standard	Setpoints are preset by cm41 cm44	
2,3	jog mode	4 : jog pos/neg	Setpoints are generated by MOP. cm23 Only positive setpoints are possible bet cm24. The jog positive or jog negative i rection of rotation.	ween cm23 and
		8 : sign of ref	The direction of rotation results from the setpoint. The jog positive or jog negative evaluated.	_
		0 : start with 0	Motorpoti function always starts with se	tpoint 0
4,5	MOP reset	16 : reset value	Start with cm28 motor poti reset value	
		32 : last ref value	After the start the last motor poti setpoir	nt is active.

4.8.8.2 Ramp generator in jog mode

4.8.8.2.1 Maximum acceleration / deceleration

The maximum acceleration or deceleration is parameterized via the following objects. The resolution of the values is $1/100 \text{ s}^{-2} = 0.01 \text{ s}^{-2}$.

Index	Id-Text	Name	Function
0x3B30	cm48	jog acceleration for [s-2]	Maximum acceleration at FOR direction of rotation (pos. speeds)
0x3B31	cm49	jog deceleration for [s-2]	Maximum deceleration at FOR direction of rotation (pos. speeds)
0x3B32	cm50	jog acceleration rev [s-2]	Maximum acceleration at REV direction of rotation (neg. speeds)
0x3B33	cm51	jog deceleration rev [s-2]	Maximum deceleration at REV direction of rotation (neg. speeds)

4.8.8.2.2 Jerk limiting

The maximum acceleration change (jerk) is parameterized via the following objects. The resolution of the values is $1/100 \text{ s}^{-3} = 0.01 \text{ s}^{-3}$.

Index	Id-Text	Name	Function
0x3B34	cm52	jog for acc jerk ls [s-3]	Maximum jerk at acceleration in FOR direction of rotation (low speed)
0x3B35	cm53	jog for acc jerk hs [s-3]	Maximum jerk at acceleration in FOR direction of rotation (high speed)
0x3B36	cm54	jog for dec jerk hs [s-3]	Maximum jerk at deceleration in FOR direction of rotation (high speed)
0x3B37	cm55	jog for dec jerk ls [s-3]	Maximum jerk at deceleration in FOR direction of rotation (low speed)
0x3B38	cm56	jog rev acc jerk ls [s-3]	Maximum jerk at acceleration in REV direction of rotation (low speed)
0x3B39	cm57	jog rev acc jerk hs [s-3]	Maximum jerk at acceleration in REV direction of rotation (high speed)
0x3B3A	cm58	jog rev dec jerk hs [s-3]	Maximum jerk at deceleration in REV direction of rotation (high speed)
0x3B3B	cm59	jog rev dec jerk ls [s-3]	Maximum jerk at deceleration in REV direction of rotation (low speed)

4.8.8.2.3 Operating modes of the ramp generator

The behaviour of the ramp generator can be adapted to the requirements of the application via object cm60 jog ramp mode.

Index Id	d-Text	Name	Function
0x3B3C c	m60	jog ramp mode	Operational performance of the ramp generator

The bits in cm60 have the following functions:

cm60	jog ramp mode 0x3B3C			0x3B3C	
Bit	Function	Value	Function		
	rome ture	0: S-curve	S-curves	S-curves	
0	ramp type	1: lin	Linear ramps		
	linear	0: sep. para	cm48-cm51		
1	ramp acc/dec	2: acc for para	cm48 is acceleration/deceleration tions of rotation (only effective if I lected, otherwise cm48-cm51 alv	inear ramps are se-	
2	s-curve type	0: continous s- curve 4: abort in s-curve	Function => Graphics in co mode)	
3	pass zero type	0: not zero 8: zero	Function => Graphics in co mode)	

Bit 4 ... 7 see co60

Drive profiles

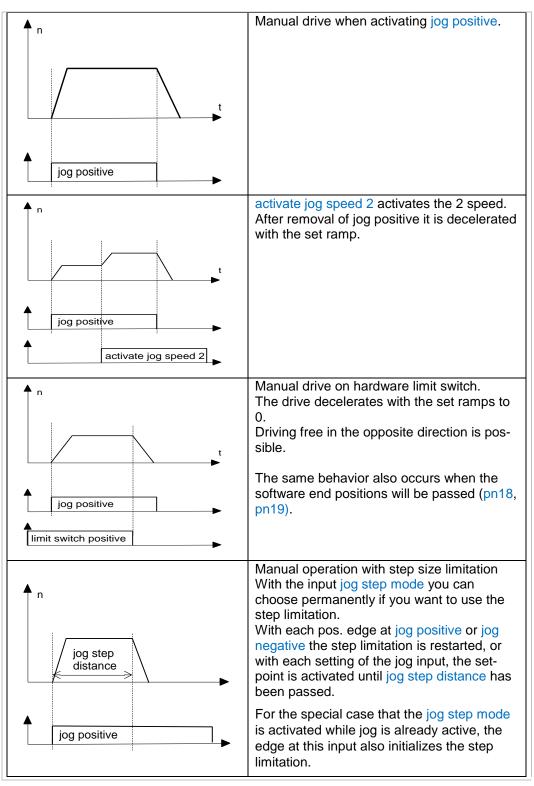


Figure 59: Drive profiles in jog mode

4.8.8.3 State of the jog mode

The state of the jog mode is displayed via the object cm61 jog mode state.

Index	Id-Text	Name	Function
0x3B3D	cm61	jog mode state	Status displays of the jog mode.

The bits in cm61 have the following functions:

cm61	jog mode state 0x3B3D			
Bit	Function	Value Function		
		0 : off	jog mode not activated	
01	jog mode positive	1 : pos	jog mode active in the positive direction	
	positive	3 : pos v2	jog mode active in positive direction with second speed	
		0 : off	jog mode not activated.	
23	jog mode negative	4 : neg	jog mode active in negative direction	
	liegative	12 : neg v2	jog mode active in negative direction with second speed	
	oton dio	0 : off	no limitation of the setpoint	
4	4 step distance	16 : distance	The step size limitation has responded the setpoint in jog mode has been limited.	
	line is	0 : off	no limitation of the setpoint	
5 limit switch		32 : lim switch	A hardware limit switch (hm06, hm07) has responded, the set- point has been limited.	
	our limit	0 : off	no limitation of the setpoint	
6 sw limit switch	64 : sw limit	A software end position (pn18, pn19) has responded, the setpoint has been limited.		

4.8.8.4 Current motorpoti setpoint

Index	Id-Text	Name	Function
0x3B3E	cm62	motor poti actual value	Setpoint currently selected by the motor poti function100.00% 100.00%

4.8.9 Operating mode-independent functions

4.8.9.1 System inversion

According to the definition, the motors rotate with positive setpoints in clockwise rotation when looking at the motor shaft. If this is not required, the real motor direction can be changed by this parameter. After activating the system inversion with co06 = 2, nothing changes except the physical direction of rotation of the motor: an adjusted positive speed setpoint causes a positive speed actual value display and a positive torque display with positive speed display indicates motorized operation. Ramps, limits and similar are not affected. All settings and displays therefore remain consistent. The display of **both** encoder channels is inverted to the physical direction of rotation.

Index	Id-Text	Name	Function
0x2506	co06	system inversion	System inversion

co06	system invertion			0x200F	
Bit	Func- tion	Value	Plaintext	Notes	
	on	0	off	Function off	
01		1	reserved	The old type of system inversion is still supported for reasons of compatibility. The parameter displays are only partially consistent, since some parameters still display the real value and not the inverted value. Therefore, always use value 2 for the system conversion in new applications.	
		2	on, plus encoder inversion ChA + ChB	The system inversion is realized by the control of two motor phases (U⇔W). A coder channels (A and B) are inverted the real, physical direction of rotation of	Additionally both en- . This only changes

4.8.9.2 Torque precontrol from spline-interpolator / ramp generator

A set torque is calculated from the internal speed difference of the ramp generator or the interpolator in the cyclic operating modes, depending on the mass moment of inertia (cs17 + dr32). This torque precontrol can be fine adjusted with factor co20.

Index	Id-Text	Name	Function
0x2514	co20	internal pretorque fact	Evaluation of torque pre-control from interpolator or ramp generator

Contrary to older firmware versions, a precontrol value is currently calculated from the spline-interpolator also at value 0 (linear interpolation) and value 3 "B-spline 3 points average".

Adjustment 2 "reference torque" can always be used in cs21 pretorque mode. (Description of the torque precontrol => Chapter 6.3.8 Torque precontrol)

The speed or position interpolator calculates the torque for precontrol, based on the acceleration profile and the mass moment of inertia of motor and load. Therefore, the correct setting of dr32 and cs17 must be ensured.

4.8.9.3 Application-specific torque limitation

The torque limitation is parameterized via the following objects.

The torque limits are indicated in % referring to the rated motor torque. The resolution is 0.1%.

Index	Id-Text	Name	Function
0x270C 0x6072	cs12	absolute torque max torque	Max. torque (applies in all quadrants)
0x270D 0x60E0	cs13	torque limit mot for positive torque limit value	Torque limit mot., positive speed
0x270E 0x60E1	cs14	torque limit mot rev negative torque limit value	Torque limit mot., negative speed -1: Value is accepted from cs13
0x270F	cs15	torque limit gen for	Torque limit gen., positive speed -1: Value is accepted from cs13 -2: Value is accepted from cs14
0x2710	cs16	torque limit gen rev	Torque limit gen., negative speed -1: Value is accepted from cs15 -2: Value is accepted from cs13

The following behavior is described in the CiA402 profile: **positive torque limit value** is valid for mot. for and gen. rev **negative torque limit value** is valid for mot. rev and gen. for To achieve this behavior, the following setting must be made: cs16 = -2 (cs16 = cs13); cs15 = -2 (cs15 = cs14)

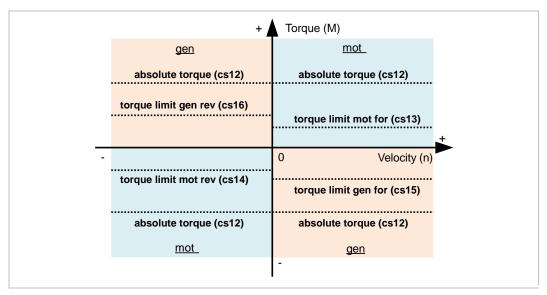


Figure 60: Torque limit in all quadrants

The smallest limit is activated in each quadrant. The effective torque limits can be read out via the following objects:

Index	Id-Text	Name	Function
0x2C22	ru34	act. torque lim mot for	Torque limit mot., positive speed
0x2C23	ru35	act. torque lim mot rev	Torque limit mot., negative speed
0x2C24	ru36	act. torque lim gen for	Torque limit gen., positive speed
0x2C25	ru37	act. torque lim gen rev	Torque limit gen., negative speed

The displayed limits here do not correspond to the available torque. They can be reduced by further limits (e.g. motor limit characteristic).

The final limit values can be read out via ru50 / ru51 act. torque lim. pos. / neg.. Since they depend, among other things, on the magnetization state of the motor, they can be displayed only after modulation release.

4.8.9.4 Operating mode switchover

Basically an operating mode change can also be carried out during operation.

The ramp generators are preloaded with the actual setpoints.

When changing into the cyclic operating modes, it must be selected with bit 4 in parameters co10...co12 whether the spline-interpolators are to be initialized with setpoints or actual values.

4.8.9.4.1 Initialization of the interpolator with actual values

Default value is the initialization with actual values. Thereby the non-active interpolators of operating modes 8...10 are constantly preloaded with actual values. After a change a setpoint can be preset directly via co15, co16, co19. A change into operating mode 8 should be done only at standstill.

4.8.9.4.2 Initialization of the interpolator with setpoints

Especially for operating mode switchover according to 8: "cyclic sync position mode" during operation, it is preferable when the initialisation of the interpolator takes place in the control.

Thereby the actual position must be read out from the inverter and setpoints must be determined by precalculation with which the complete interpolator must be filled via co19 before change-over.

Example:

at co10 = 20 "B-Spline, 4 Points + target value" applies:

three setpoints must be preset before the changeover via co19. The fourth setpoint is set simultaneously with the changeover to operating mode 8.

4.9 Synchronisation

4.9.1 Synchronous time

Ethernet-based fieldbus types such as EtherCAT support the synchronous (cyclic synchronous) operating modes.

This means, each inverter has a PLL which automatically synchronizes with the fieldbus master. As soon as the sync interval is set by the master, all control algorithms synchronize to the sync signal via the PLL.

As soon as the sync interval of the master is adjusted in fb10 after power-on, all controller algorithms also synchronize to this PLL.

If the synchronization has been carried out, bit 8 (synchronous) is set in the status word (after power-on the synchronous operating mode is initially deactivated).

All inverters on an EtherCAT master can be operated synchronously at about +/-100ns.

Alternatively, it is also possible to parameterize the sync interval in object 0x60C2 Interpolation time period.

If it is written subsequently via bus to 0x2B0A fb10 or 0x60C2 Interpolation time period, the value must fit to the value of the EtherCAT register. Otherwise the drive will not be synchronous.

Index	Id-Text	Name	Function
0x2B0A	fb10	sync interval	Activation of the synchronous operating modes
0x2B0B	fb11	set sync level	Definition of the level for the synchronous bit
0x2B0C	fb12	KP sync PLLI	Kp for the internal PII
0x2B13	fb19	measured sync interval	Measured value of actual syncs

The default values for fb11 and fb12 are optimized for EtherCAT. The internal behaviour of the PLL can be adapted to other fielbus master with fb11 and fb12.

If bit 8 (synchronous) should not be set, the sync level or the Kp can be increased to achieve the synchronization.

The changed value of fb12 has only an effect when fb10 is written again.

Independent on the adjustments of fb10 – fb12, the distance between two syncs signals is measured and displayed in fb19. With the first valid measured value after power-on, fb10 is automatically parameterized.

Depending on is22, fb10 is set to the valid value which is nearest to the measured value fb19. => Table for is22.

The minimum (one "mid irq") and maximum (absolute upper limit 16ms) cycle time depends on is22.

4.9.2 Optimizing the PLL

As soon as a SYNC signal is given cyclically, the measured value is visible under fb19 measured sync interval. If an offline recording of this value is taken with the scope of COMBIVIS 6, it can be determined how exactly the respective master can preset the SYNCS. With this calculated deviation you can determine the setting for fb11 set sync level. (largest value of fb19 – smallest value of fb19). The value for fb11 should always be greater than the deviation of the measured values determined from the scope recording.

The gain of the PLL can be influenced with fb12 KP sync PLL and by way the speed which reacts to changes of the SYNC. For this you can make an offline recording with aa85, st00 and fb10. The offline measurement is started by setting a value to fb10, thus the transient response of the PLL can be seen. At the point where fb10 is preset, aa85 will change to a maximum value until the SYNC bit is set in st00. This behavior can now be changed with fb12 until a required characteristic occurs.

The changed values of fb11 and fb12 have only an effect when fb10 is written again.

5 Display Parameters

5.1 Overview of the ru parameters

The ru- (run) parameter group represents the multimeter of the inverter. Speeds, voltages, currents etc. are displayed here, with which a statement about the current operating status of the inverter can be made.

These parameters are required especially during start-up or troubleshooting of a system.

The following parameters are available:

Index	Id-Text	Name	Function	
0x2C01	ru01	exception state	Display of the current error (=> Chapter 4.3.1 Errors)	
0x2C02	ru02	warning bits	Display of the warnings bit-coded	
0x2C03	ru03	warning state	Displays the warning message with the highest priority	(=> 4.3.3 Warnings)
0x2C04	ru04	supply unit state	Status display of the DC link	
0x2C05	ru05	set value display	Set value display (before ramp genera	ator) in velocity mode
0x2C06	ru06	ramp out display	Setpoint speed for speed controller (after ramp and PT1 filter)	
0x2C07	ru07	act. frequency	Actual output frequency (resolution 1/8192 Hz)	
0x2C08	ru08	act. value	Actual speed for speed controller (measured or estimated)	
0x2C09	ru09	act. encoder speed	actual measured speed	
0x2C0A	ru10	act. apparent current	Motor apparent current	
0x2C0B	ru11	act active current	Motor active current (undefined in v/f	operation)
0x2C0C	ru12	act. reactive current	Motor magnetizing current (undefined	in v/f operation)
0x2C0D	ru13	peak apparent current	peak apparent current	
0x2C0E	ru14	act. Uic voltage	DC link voltage	
0x2C0F	ru15	peak Uic voltage	Peak value of the DC link voltage	
0x2C10	ru16	act. output voltage	Output voltage	
0x2C11	ru17	modulation grade	Modulation grade	
0x2C12	ru18	dig. input state	Internal image of the digital inputs (aft Digital Inputs)	er processing) (=> 7.1

Index	Id-Text	Name	Function		
0x2C13	ru19	internal output state	State of the internal digital outputs		
0x2C14	ru20	dig. output state	State of the outputs (at the end of the processing blocks)	(=> Chapter 7.2 Digital outputs)	
0x2C15	ru21	dig. output flags	State of the flags		
0x2C17	ru23	reference torque	Reference torque (output of the speed	controller)	
0x2C18	ru24	actual torque	Actual torque		
		heatsink temperature values	Structure of heatsink temperature value	es	
0x2C19	ru25	heatsink temperature 1	Heatsink temperature display		
		heatsink temperature 2	From housing size 7, several heatsink t measured, displayed and evaluated for		
		heatsink temperature 3	protection	overtemperature	
		internal temperature PU values	Structure of heatsink temperature value	es	
0x2C1A	ru26	internal temperature PU 1	From housing size 7, several internal temperatures are measured, displayed and evaluated for overtemperature		
		internal temperature PU 2			
		internal temperature PU 3			
0x2C1B	ru27	OL2 counter	Short-term overload level		
0x2C1C	ru28	motor temperature	Motor temperature (respectively state o	f the PTC)	
0x2C1D	ru29	OL counter	Continuous overload counter		
0x2C1E	ru30	SACB comm state	State of the internal communication bus	s (SACB bus)	
0x2C20	ru32	motor prot. counter	Level of the electronic motor protection	relay	
0x2C21	ru33	position actual value	Position value of the encoder after the cec24/ec25	gear factor	
0x2C22	ru34	act. torque lim. mot for			
0x2C23	ru35	act. torque lim. mot rev	Torque limits, which result from the sett or in the profile parameters 0x60E0 / 0x	:60E1.	
0x2C24	ru36	act. torque lim. gen for	The final limits can be different due to the limiting characteristic.	ne influence of the	
0x2C25	ru37	act. torque lim. gen rev			
		encoder positions	Structure of position values of encoder	1	
0v2C26	ru 20	gearless pos [1]	Direct position value of the encoder 32b	oit without sign	
0x2C26	ru38	gearless pos high [2]	Upper 16bit of the direct position value		
		gearless pos low [3]	Lower 16bit of the direct position value		
0x2C29	ru41	dig. input terminal state	State of the digital inputs (before procestic) (=> 7.1 Digital Inputs)	State of the digital inputs (before processing)	

Index	Id-Text	Name	Function	
0x2C2A	ru42	AN1 value display	Analog input value of AnalogIn 1	
0x2C2B	ru43	AN1 after gain display	Analog input value of AnalogIn 1	
0x2C2A	ru44	AN2 value display	Analog input value of AnalogIn 2	
0x2C2B	ru45	AN2 after gain display	Analog input value of AnalogIn 2	
0x2C30	ru48	analog REF display	=> Chapter 7.3.4 Calculation of REF and AUX	
0x2C31	ru49	analog AUX display	=> Chapter 7.3.4 Calculation of REF and AUX	
0x2C32	ru50	act. torque lim. pos.	Actual torque limit (after consideration of limiting characte	er-
0x2C33	ru51	act. torque lim. neg.	istic, current limits, etc.)	
0x2C34	ru52	system date	Date: 32 bit counter with 1s resolution from 1th January 1970 00:00. (=> 5.9.1	
0x2C35	ru53	system time	Time: 32 bit counter with 1ms resolution from 00:00.	
0x2C39	ru57	eff. motor load	mean effective motor utilization	
0x2C3A	ru58	actual index	Actual index. Results from the state of the inputs, which a selected with di21 index input for the index setting.	are
0x2C63	ru63	Uic voltage at Power On	Measured DC link voltage at the end of the precharging	
0x2C48	ru72	act. switch. freq	Actual switching frequency	
0x2C49	ru73	Imot/ImaxOL2	Ratio of the actual motor current to short time current limi	it
0x2C4A	ru74	unfiltered flags state	State of the unfiltered flags (=> Chapter 7.2 Digital outputs)	
0x2C4B	ru75	global drive state	Global status display	
0x2C4C	ru76	drive state	Global overview over the drive state	
0x2C4D	ru77	internal temperature CB	Internal temperature control board	
0x2C4E	ru78	analog out display	Value of the analog output in % (100% = 10V)	
0x2C50	ru80	relative torque	Current torque referred to a limit value (Description => Chapter 5.6 Torque displays)	
0x2C51	ru81	act torque	Actual torque (identical ru24) in Nm	

Index	Id-Text	Name	Function
		actual power	Structure of power displays
		mechanical power [1]	Mechanical shaft power
		electrical output power [2]	Electrical output power of the converter
		electrical power loss [3]	Power loss (= emitted active power by the inverter - emitted shaft power)
0x2C52	ru82	out. energy mot.[4]	Motor energy (integrated value of the positive (motor) electrical output power[2])
		out. energy mot. volatile[5]	Motor energy during a power-on cycle (Value is deleted when the 24V supply is switched off)
		out. energy gen.[6]	regenerative energy (integrated value of the negative (regenerative) electrical output power[2])
		out. energy gen. volatile[7]	regenerative energy during a power-on cycle (Value is deleted when the 24V supply is switched off)
		diff. speed	Structure of differential speed displays (is also calculated when the modulation is switched off)
		diff. speed [1]	Difference between speed setpoint (ru84) and actual speed value (ru08)
0x2C53	ru83	diff. speed [2]	Difference of not smoothed ramp output value (see A in Fehler! Verweisquelle konnte nicht gefunden werden.) and actual speed value (ru08)
0,2000	1003	diff. speed [3]	Difference of smoothed ramp output value (smoothing after cs19; see B in Fehler! Verweisquelle konnte nicht gefunden werden.) and actual speed value (ru08)
		diff. speed [4]	Difference (see C in Fehler! Verweisquelle konnte nicht gefunden werden.) of smoothed ramp output value with position controller influence (ru06) and actual speed value (ru08)
0x2C54	ru84	ref. value display	preset setpoint speed (in each operating mode)
0x2C55	ru85	actual speed PT1	filtered actual speed (ru08 to PT1 filter / filter time constant = is39)
0x2C56	ru86	standard set speed	actual setpoint speed, but this can be overwritten by the blockade function. ru86 displays the setpoint that would be active if the blockade function did not determine the setpoint speed
0x2C57	ru87	ramp out value	smoothed ramp output value (smoothing according to cs19; see point B in Fehler! Verweisquelle konnte nicht gefunden werden.)

5.2 Speed displays

Set value displays:

Index	Id-Text	Name	Function	Resolution
0x2C05	ru05	set value display	Setpoint speed display before ramp generator in state OPERATION ENABLED at mode of operation = 2 "velocity mode"	1/8192 rpm
0x2C06	ru06	ramp out display	Set speed for speed controller after ramp generator and the PT1 filter of the set speed (cs19 ref speed PT1-time)	1/8192 rpm
0x2103	st03	vl velocity demand	Set speed at the ramp generator output	1 rpm
0x2C54	ru84	ref. value display	Setpoint speed display before ramp generator (operating mode independent)	1/8192 rpm
0x2C55	ru85	actual speed PT1	filtered actual speed (ru08 to PT1 filter / filter time constant = is39)	1/8192 rpm
0x2C56	ru86	standard set speed	ru86 displays the setpoint that would be active if the blockade function did not determine the set- point speed	1/8192 rpm
0x2C57	ru87	ramp out value	smoothed ramp output value (smoothing according to cs19; see point B in Fehler! Verweisquelle konnte nicht gefunden werden.)	1/8192 rpm

Actual speed / frequency displays:

Index	Id-Text	Name	Function	Resolution
0x2C07	ru07	act. frequency	Actual output frequency	1/8192 Hz
0x2C08	ru08	act. value	Actual speed: - measured speed at control mode with encoder - estimated speed at ASCL / SCL - ramp output speed at v/f control	1/8192 rpm
0x2C09	ru09	act. encoder speed	Actual speed measured with encoder	1/8192 rpm
0x2120	st32	velocity actual value	Current actual speed as ru08 normalized by the velocity shift factor co02	defined by co02
0x2C55	ru85	actual speed PT1	filtered actual speed (ru08 after PT1 filter with the time constant is39 / 0 = filter switched off)	1/8192 rpm

Difference speed displays:

Index	Id-Text	Name	Function
0x2C53	ru83	diff. speed [1][4]	Difference between setpoint speed and actual speed Description see previous chapter: 5.1 Overview of the ru parameters and Fehler! Verweisquelle konnte nicht gefunden werden.

Figure 61: Auxiliary representation for the calculation of ru83[]

5.3 Position displays

Index	Id-Text	Name	Function
0x2C21	ru33	position actual value	Position value of the encoder (without influencing homing, position scaling or system inversion) after the gear factor ec24/ec25.
		encoder positions	Structure of position values of encoder 1
0x2C26	ru38	gearless pos [1]	Direct position value of the encoder 32bit without sign
0.000	1036	gearless pos high [2]	Upper 16bit of the direct position value
		gearless pos low [3]	Lower 16bit of the direct position value
0x2125	st37	demand position	Internal set position profil positioning mode: Output of the profile generator cyclic sync position mode: Output of the spline interpolator Resolution defined by coo3
0x2121	st33	position actual value	Actual position / resolution defined by co03
0x2124	st36	following error	Actual following error / resolution defined by co03
0x2130	st48	rho actual value	Electrical position / 65536 = 1 electr. period = 360° electr.

5.4 DC link displays

Index	Id-Text	Name	Function
0x2C04	ru04	supply unit state	Charging status of the DC link: - 5: phase failure => DC voltage lower than required for operation - 2: charging => Load-shunt-delay time is running - 4: run => Operation (modulation release) possible
0x2C0E	ru14	act. Uic voltage	Voltage in DC link [0.1V]
0x2C0F	ru15	peak Uic voltage	Peak value of the DC voltage is deleted by Power-On or overwritten with the value 0

5.5 Current displays

Index	Id-Text	Name	Function
0x2C0A	ru10	act apparent current	Motor apparent current [0.01A]
0x350C	is12	display apparent current PT1	Smoothing time for the motor current display in ru10
0x2C0D	ru13	peak apparent current	Peak value of unsmoothed motor apparent current Deletion by Power-On or overwriting with 0
0x2C0B	ru11	act active current	Active current [0.01A]
0x2C0C	ru12	act reactive current	Reactive current [0.01A]
0x2C49	ru73	Imot/Imax OL2	Ratio of the actual motor current to short time current limit [0.1%]
0x2C39	ru57	eff. motor load	Mean effective motor load [0.1%]

5.6 Torque displays

Index	ld- Text	Name	Function	Resolution
0x2C17	ru23	reference torque	Reference torque (output of the speed controller)	1000 =
0x2C18	ru24	actual torque	Actual torque (COMBIVIS display in %)	100% dr09 rated
0x2122	st34	torque actual value	Actual torque (COMBIVIS display unnormalized)	torque
0x350D	is13	display torque PT1	Smoothing time for the torque display in ru23 / ru24 / ru81	1000 = 1ms
0x2C19	ru34	act torque lim mot for		
0x2C1A	ru35	act torque lim mot rev	Torque limits, which result from the settings in cs12 cs16 or in the profile parameters 0x60E0 / 0x60E1. The final limits can be different due to the influence of the limiting characteristic or the operation mode (e.g. fault reaction ramp).	1000 = 100% dr09 rated torque
0x2C24	ru36	act torque lim gen for		
0x2C25	ru37	act torque lim gen rev		

Index	ld- Text	Name	Function	Resolution
0x2C32	ru50	act torque lim pos	Actual valid torque limit with consideration of the operating condition: speed, limiting characteristic, current limits, motor flux, etc.	
0x2C33	ru51	act torque lim neg	Since there is no current flow when the modulation has been switched off, the actual torque limit is 0.	
0x2C50	ru80	relative torque	ru80 indicates the machine load with regard to torque. The display can be adjusted with parameter pn88 [1] display configuration. (Description see chapter 4.4.23 Monitoring of the load)	0.1%
0x2C51	ru81	act torque	Actual torque (identical ru24) in Nm	0.001 Nm

5.7 Power/Energy Displays

Index	Id-Text	Name	Function	Resolution
0x2C52	ru82	mechanical power [1]	Shaft power output	
0x2C52	ru82	electrical output power [2]	Active power absorbed by the motor	0.001 kW
0x2C52	ru82	electrical power loss [3]	Power losses = emitted active power by the inverter - emitted shaft power	0.001 1.11
0x2C52	ru82	out. energy mot.[4]	Motor-integrated "electrical output power[2]", energy	0.1 kWh
0x2C52	ru82	out. energy mot. vola- tile[5]	The motor integrated "electrical output power[2]", energy (volatile, ZERO again after power on)	0.001 kWh
0x2C52	ru82	out. energy gen.[6]	The generator-integrated "electrical output power[2]", energy	0.1 kWh
0x2C52	ru82	out. energy gen. vola- tile[7]	The generator-integrated "electrical output power[2]", energy (volatile, ZERO again after power on)	0.001 kWh

The power display can be filtered via "display power PT1" is34

NOTICE

➤ The display of ru82[1] and ru82[3] is only valid in closed-loop operation in the state "operation enabled"! In open-loop operation or other states any values can be displayed.

5.8 Status displays

5.8.1 ru75 global drive state

A global overview of the drive state can be obtained with this 32 bit object. The different bit groups contain information about the operating state, the actual state of the state machine, the ramp generator and the posi module.

ru75	global drive state		0x2C4B	
Bit	Name	Note		
0 3	ready for modulation	Reasons that prevent a modulation release)	
47	state machine display	st12		
815	exception state	ru01		
1619	ramp state State of the ramp generator			
2023	posi state	State of the positioning module (pp-modes)		
2425	pos./neg. limit switch active	(internal) state of the positive/negative limit switch		
26	error bit suppression active Indication that the modulation is switched off due to an error the error bit in the statusword and the error display in ru01 anot set.			
2731	reserved	not used		

The value of the parameter consists of the sum of the single bits or bit groups. The value and the multiplier with which the parameter value is created are entered in the following tables.

Example:

- DC link precharging not yet executed (Bit 1 Uic error is set)
- STO is not set (Bit 2 STO missing is set)
- Display of the state machine is value 2 (Switch on disable)
- Error display is value 0 (no error)
- State of the ramp generator is value 6 (ramp output corresponds to input)
- State of the positioning module is value 0 (no active positioning)
- => this results in the following total value for ru75:

1 * 2 + 1 * 4 + 16 * 2 + 256 * 0 + 6 * 65536 + 0 * 1048576 = 393254dez. = 00060026hex.

5.8.1.1 State for modulation release (4 bits)

With these 4 bits it can be determined what is currently missing for modulation release.

ru75	global drive state		ate	Bit 03	ready for modulation state	
Bit	Valu e	Mult.	Plaintext	Notes		
03	0	0	RFM	Modulation release can be made directly with setting the enable modulation bit in the controlword		
0	1	1	E,ru01	There is an error. => ru01		
1	1	2	E.uic	The DC link in the power unit has not been charged. The voltage is below the UP level. ru04 is unequal to 4 "run"		
2	1	4	E.STO	At least one STO input is not set. => ru18		
3		8		Reserved		

5.8.1.2 Display of the state machine (4 Bits)

This 4 bits displays the actual state of the state machine.

ru75	ru75 global drive state		bal drive state	Bit 47	state machine display				
Bit	Valu e	Mult.	Plaintext						
	0		initialization						
	1		not ready to switch on						
	2		switch on disable						
	3		ready to switch on						
	4		switched on						
	5		operation enabled	The meaning an	nd the values are identical with				
47	6	16	quick stop active	the description of st12.					
	7	10	fault reaction active	The detailed description of the single state the state machine and the changes can be					
	8		fault	found in chapter	4.1 State machine				
	9						shutdown active		
	10		disable operation active						
	11		start operation active						
	12		mod off pause active						
	13		power off active						

5.8.1.3 exception State (8 Bit)

The actual ru01 error message is displayed in these 8 bits. The value is identical to ru01, but it is multiplied with 256 to be displayed in bits 8...15 of ru75.

ru75		global drive state Bit 815 exception state		exception state display		
Bit	Valu e	Mult. Plaintext		Meaning		
	0		no exception			
	3		ERROR overcurrent PU	The adjacent lines are illustrative only (exam-		
815	4	256	ERROR overcurrent analog	 ples) of the values. The meaning of the values is identical with ru01. The complete list of all values and the description of the error messages can be found in the 		
		- 256 -				
	116		ERROR GTR7 OC	chapter 4.3.1 Errors		
	117		ERROR GTR7 always ON			

5.8.1.4 State of the ramp generator (4 Bit)

ru75	ru75		global drive state		Bit 1619	ramp state display	
Bit	Value	Mult.	Plaintext	Meaning	•		
	0		pos acc inc	Positive output positive accele	t value, eration is increa	ased	
	2		pos acc	Positive output value with constant positive acceleration			
			pos acc dec	Positive output positive accele		eased	
	3		neg acc inc	Negative outponegative accel		eased	
	5		neg acc	Negative output value with constant negative acceleration			
		neg acc dec	Negative output value, negative acceleration is decreased		eased		
1619	6	65536	ref eq out	Ramp output equal to ramp input		nput	
	7		pos dec inc	Positive outpunegative accel		eased	
	8		pos dec	Positive output with constant in		eration	
	9		pos dec dec	Positive outpunegative accel		eased	
	10		neg dec inc	Negative output value, positive acceleration is increased		ased	
	11		neg dec	Negative outpout with constant p	ration		
	12		neg dec dec	Negative outpositive accele	ut value, eration is decre	eased	

positive or negative acceleration describes the sign of the acceleration or deceleration torque:

positive acceleration = forward acceleration or reverse deceleration

negative acceleration = reverse acceleration or forward deceleration

5.8.1.5 State of the posi module (4 Bit)

ru75	ru75 g		global drive state		Bit 2023	ramp state display	
Bit	Valu e	Mult.	Plaintext Me		Meaning		
	0		ready for posi	Pos	itioning is not	active	
	1		init posi	Initi	Initialization of the posi module		
	2		posi pos	Pos	ositioning in positive direction		
2023	3	1048576	posi neg	Pos	Positioning in negative direction		
	4	1046376	target approach	App	Approach into target position		
	5		V3P active	Inte	rmediate spee	d positive	
	6		V3N active	Intermediate speed negative			
	7		target reached	Tar	get reached		

5.8.1.6 State of the pos./neg. limit switch

ru75	global drive state			Bit 2425	pos./neg. limit switch active	
Bit	Valu e	Mult.	Plaintext	Meaning		
24	1	16777216	pos. limit switch active	positive limit switch internally active		h internally active
25	1	33554432	neg. limit switch active	neg	ative limit swite	ch internally active

5.8.1.7 Suppressed error bit

ru75	global drive state		Bit 26	error bit suppression active	
Bit	Valu e	Mult.	Plaintext	Meaning	
26	1	67108864	error bit suppression active	off due to an	error, but the error bit in the nd the error display in ru01 are

5.8.2 ru76 drive state

A global overview of the different drive state displays can be obtained with this 32 bit object.

The value of the parameter consists of the sum of the single bits or bit groups (like ru75).

The value and the multiplier with which the parameter value is created are entered in the following tables.

ru76	drive state		0x2C4C			
Bit	Name	Note				
0	modulation state	Modulation active				
1 4	modulation state	Reasons that prevent a modulation release				
5 8	modes of operation Display of the operating mode (st02)					
9 11	act. Motor	Motor Display of the motor type (dr00)				
12 14	control mode Actual control mode (cs00)					
15 17	Ramp state State of the ramp generator					
18 20	other	State of special functions				
21 31	reserved	not used				

5.8.2.1 State of modulation release (5 Bit)

ru76	drive state			Bit 04	modulation state	
Bit	Valu e	Mult.	Plaintext	Notes		
0	1	1	MON	Modulation is active		
14	0	1	RFM	Modulation release can be made directly with setting the enable modulation bit in the control word		
1	1	2	E,ru01	There is an error. => ru01		
2	1	4	E.uic	The DC link in the power unit has not been charged. The voltage is below the UP level. ru04 is unequal to 4 "run"		
3	1	8	E.STO	At least one STO input is not set. => ru18		
4		16		Reserved		

5.8.2.2 Modes of Operation display st02 (4 Bit)

ru76	drive state			Bit 58	modes of Operation	
Bit	Value	Mult.	Plaintext	Notes		
	1		PP	Profile positioning n	node	
	2		VL	Velocity mode		
	6		НМ	Homing mode		
58	8	32	CSP	Cyclic synchronous	positioning mode	
	9		CSV	Cyclic synchronous	velocity mode	
	0, 35, 7,1015		reserved			

5.8.2.3 Actual motor dr00 (3 Bit)

ru76	drive state			Bit 911	actual motor
Bit	Value	Mult.	Plaintext	Notes	
	0		ASM	Asynchronous motor	
	1		SM	Synchronous motor	
0 11	2		reserved		
911	3	512	reserved		
	4		SynRM	Synchronous reluctance n	notor
	57		reserved		

5.8.2.4 Actual control mode cs00 (3 Bit)

ru76	drive s	tate		Bit 1214 actual control	
Bit	Valu e	Mult.	Plaintext	Notes	
	0		v/f	Voltage-/frequency charac	cteristic
	1		Enc	Operation with encoder without motor model	
1214	2	4096	Enc+Model	Operation with encoder and motor model	
	3		Model	Operation without encoder with motor model (SCL / ASCL)	
	47			reserved	

5.8.2.5 State ramp generator (3 Bit)

ru76	drive state		Bit 1517	ramp state	
Bit	Valu	Mult.	Plaintext	Notes	
	е				
	0		zero speed	Set speed 0	
	1		forward acc	Forward acceleration	
	2	00700	forward dec	Forward deceleration	
45 47	3		forward const	Forward constant run	
1517	4	32768	reverse acc	Reverse acceleration	
	5		reverse dec	Reverse deceleration	
	6		reverse const	Reverse constant run	1
	7			reserved	

5.8.2.6 Others (3 Bit)

ru76 d	rive state	Э		Bit 1820 others		
Bit	Valu e	Mult.	Plaintext	Notes		
	0			No special function a	ctive	
	1		ssf	Speed search functio	n active	
	2		ident	Motor identification active		
1820	3	262144	flux	Flux formation active (ASM)		
	4		brake	one of the brake dow	ntimes is running	
	6		fault reaction	Fault reaction ramp is	s active	
	5, 7			reserved		

5.8.2.7 Example

If the drive is in the following state:

ru76	drive state	drive state			
State	Bit group	Valu e	Mult.	Meaning	
modulation state	04	1	1	Modulation active	
modes of Operation	58	2	32	Velocity mode is active	
actual motor	911	1	512	Motor type is synchronous motor	
actual control	1214	2	4096	Operation with encoder and motor model	
ramp state	1517	3	32768	actual ramp state = forward constant run	
others	1820	0	262144	No special function active	

the following parameter value results for ru76

1*1+2*32+1*512+2*4096+3*32768+0*262144=107073dec. = 0001A241hex.

Display:

MON + VL + SM + Enc+Model + forward const

5.8.3 de115 global drive state mask

Index	Id-Text	Name	Function
0x2073	de115	global drive state mask	Masking of single bits of ru75

Single bits of ru75 and ru76 can be switched off with this object.

Example: de115 = 0x0F0000. Only the ramp state is visible in ru75 with this setting. All other bits are suppressed.

5.8.4 ru30 SACB comm state

This 16 bit object displays the state of the communication of the control board with the safety module (only F6-A and S6-A) with the power unit (from housing size 6 at F6) and with the encoder interface.

This object can be used to evaluate errors ru01 = 41 "ERROR safety module SACB comm.", ru01 = 42 "ERROR power unit SACB comm." and ru01 = 43 "ERROR enc.intf. SACB comm.".

There are two special cases for the communication with the power unit: - For devices up to housing size 5 there is no communication with the power unit, but the plain texts for bits $8 \dots 11 = 0$ and bits $16 \dots 19 = 0$ are displayed. - For devices of housing size 6, there is no communication with the power unit CPU2, but the plain texts for bits $16 \dots 19 = 0$ are displayed.

In both cases the bits are not considered in the error evaluation, error ru01 = 42 "ERROR power unit SACB comm." is not triggered by this.

The meaning of the individual bits is defined as follows:

ru30	SACB comm	n state 0x2C1E		
Bit	Value	Function		
0 7	Status SACE	s communication with the safety mod	ule (only F6-A / S6-A)	
0	1	Safety module found		
1	2	Communication active	All bits are set (value 15):	
2	4	Communication initialized	Communication OK	
3	8	Communication is running		
4	16	Error initialization safety module		
5 7		reserved		
8 15	Status SACE	3 communication with power unit (F6	from housing size 6)	
8	256	Power unit found		
9	512	Communication active	All bits are set (value 240):	
10	1024	Communication initialized	Communication OK	
11	2048	Communication is running		
12	4096	Error initialization power unit		
13 15		reserved		
16 23	Status SACE	B communication with power unit CPU	J2 (F6 from housing size 7)	
16	65536	Power unit CPU2 found		
17	131072	Communication active	All bits are set (value 983040):	
18	262144	Communication initialized	Communication OK	
19	524288	Communication is running		
20	1048576	Error initialization power unit CPU2		
21 22		reserved		
23	8388608	Communication with power unit CPU2 deactivated (power unit not switched on)		
24 31	Status SACE	3 communication with the encoder int	erface	

ru30	SACB comm	state		0x2C1E
Bit	Value	Function		
24	16777216	Encoder interface found		
25	33554432	Communication active	All bits are set (v	value 25658240):
26	67108864	Communication initialized	Communication	OK
27	134217728	Communication is running		
28	268435456	Error initialization encoder interface	•	
29 31		reserved		

5.9 Operating hours counter

5.9.1 Real time clock

The device has parameters for a real time clock. Time and date must be adapted by the control with each power-on. The time formats TIME and DATE which are known from CODESYS are used.

Index	Id-Text	Name	Function
0x2c34	ru52	system date	Datum [DATE_AND_TIME]
0x2c35	ru53	system time	Time [TIME_OF_DAY]

DATE_AND_TIME: 32 bit counter with 1s resolution from 1th January 1970 00:00.

TIME_OF_DAY: 32 bit counter with 1ms resolution from 00:00.

Only ru52 is writable. Internally, ru53 is directly synchronized with ru52.

5.9.2 Operating hours counter

Index	Id-Text	Name	Function
0x2064	de100	hour counter	Operating time in hours
0x2065	de101	mod hour counter	Operating time in hours when modulation is switched on

5.9.3 System counter

Index	Id-Text	Name	Function
0x2123	st35	system counter	continuous 250us counter

5.10 Error displays and counter

5.10.1 Error / warning displays

Index	Id-Text	Name	Function	
0x2C01	ru01	exception state	Display of the current error (=> Chapter 4.3.1 Errors)	
0x2C02	ru02	warning bits	Display of the warnings bit-coded	
0x2C03	ru03	warning state	Displays the warning message with the highest priority	(=> 4.3.3 Warnings)

5.10.2 Error counter

The occurrence of specific errors is counted internally.

Index	Id-Text	Name	Function
0x2066	de102	OC error count	
0x2067	de103	OL error count	
0x2068	de104	OP error count	Number of errors (is stored non-volatile, if storage is not deactivated)
0x2069	de105	OH error count	dolivated)
0x206a	de106	OHI error count	

5.10.3 Error memory

The occurrence of exceptions is stored with date and time. To this end there is a FIFO memory with 16 entries. Beside the three fixed defined values, 4 additional objects can be recorded in the error memory.

Index	Id-Text	Name	Function
0x300A	ud10	exception history date	Value list of ru52 system date when the error occurred
0x300B	ud11	exception history time	Value list of ru53 system time when the error occurred
0x300C	ud12	history exception state	Error list of ru01 exception state
0x300D	ud13	history data 1	List of the defined data in ud17
0x300E	ud14	history data 2	List of the defined data in ud18
0x300F	ud15	history data 3	List of the defined data in ud19
0x3010	ud16	history data 4	List of the defined data in ud20
0x3011	ud17	history data 1 selector	Selection of the data for ud13
0x3012	ud18	history data 2 selector	Selection of the data for ud14
0x3013	ud19	history data 3 selector	Selection of the data for ud15
0x3014	ud20	history data 4 selector	Selection of the data for ud16

	history data selector	ud17 ud20	
Value	selected parameter	Id-Text	Resolution
0	no	0000h: off	
0x2C0A	Apparent current	ru10	0.01 [A]
0x2C0E	DC link voltage	ru14	0.1 [V]
0x2C09	Actual speed	ru09	8192 [rpm]
0x2C19	Temperature	ru25 [1]	0.1 [°C]
0x2064	Operating hours counter	de100	0.1 [h]
0x2065	Operating hours counter modulation on	de101	0.1 [h]
0x2C10	Output voltage	ru16	0.1 [V]
0x2C11	Modulation grade	ru17	0.1 [%]
0x2C21	Actual position	ru33	1/65536 revolution

The above table contains only the parameters whose recording appears to be most useful in most cases. In principle, the address of each parameter can be entered in ud17...ud20.

When a value is entered in the history data selector, the corresponding error memory is overwritten with 0. The latest entry is always stored in index 1, the oldest entry is stored in index 16 which is deleted with the next error.

The standardisation of the corresponding parameter must be observed for the interpretation of the values in $ud13 \dots ud14$

5.11 Inverter data

The most important inverter characteristics are displayed in the inverter data.

The limits dependent on the power unit are displayed for some parameters (de32 tripping threshold undervoltage, de29 inverter maximum current).

The actual limit can be changed by parameter settings.

Not all parameters are available for all control types (A or K).

Index	Id-Text	Name	Function	
0x2000	de00	device serial number	Serial number of the inverter	
0x2002	de02	device production info		
0x2004	de04	AB number	only for internal use	
0x2006	de06	customer number		
0x2008	de08	device configuration ID	Configurations ID (number of the parameter description for COMBIVIS)	
0x2009	de09	product code	Identification of the inverter type in the bus	
0x200B	de11	VARAN licence number	VARAN licence number	
0x200D	de13	ctrl hw type	Control card type (Fieldbus type, hardware version)	
0x200E	de14	ctrl production info	only for internal use	
0x200F	de15	ctrl type	Control card type	
0x2010	de16	ctrl software version	Software version	
0x2011	de17	ctrl software date	Software date	
0x2012	de18	fpga core version	FPGA software version	
0x2013	de19	fpga core date	FPGA software date	
0x2016	de22	power production info	only for internal use	
0x2018	de24	power software version	Power unit software version	
0x2019	de25	power software date	power unit software date	
0x201A	de26	saved inverter data ID	Saved power unit identifier	
0x201B	de27	inverter data ID	Actual power unit identifier	
0x201C	de28	inverter rated current	Inverter rated current	
0x201D	de29	inverter maximum current	Inverter software current limit	
0x201E	de30	inverter rated voltage	Inverter rated voltage	
0x201F	de31	inverter maximum DC voltage	Tripping threshold overvoltage error	
0x2020	de32	inverter minimum DC voltage	Tripping threshold undervoltage error	
0x2021	de33	inverter rated switching frequency	Rated switching frequency	
0x2022	de34	inverter maximum switching frequency	Maximum switching frequency	
0x2023	de35	inverter intermed.circuit capacity [uF]	DC link capacity	
0x2024	de36	braking transistor default level	Default level for braking transistor activation	
0x2026	de38	safety serial number	Unique identification number of the safety functionality Part 1	
0x2027	de39	saved safety type	Saved type of the safety module	
0x2028	de40	safety production info	Unique identification number of the safety functionality Part 2	

Index	Id-Text	Name	Function	
0x2029	de41	safety type	Current type of the safety module	
0x2030	de42	safety software version	Software version of the safety module	
0x2031	de43	safety software date	Software date of the safety module	
0x202C	de44	KTY software version	Motor temperature measuring software version	
0x202D	de45	KTY software date	Motor temperature measuring software date	
0x2032	de50	fieldbus stack version	Version of the fieldbus stack	
0x2033	de51	fieldbus stack date	Date of the fieldbus stack	
0x2034	de52	enc interf software version	Software version of the encoder interface software (control type A and P only)	
0x2035	de53	enc interf software date	Software date of the encoder interface software (control type A and P only)	
00050	de80[1]	current scale value	Full scale current	
0x2050	de80[2]	power unit data format	Power unit data format	
0x2078	de120	max output frequency	Maximum output frequency	

5.11.1 Product code

The product code identifies the inverter in the bus so that the control can recognize the device type.

The range 0x00800000 to 0x0080FFFF is reserved for device type F6 (1...9).

de09	product code	0x2009
Value	Device type	
0x00800000	Device type F6 (19) control type K	
0x00800001	Device type F6 (19) control type A	
0x00800002	Device type F6 (19) control type P without encoder in	nterface
0x00800003	Device type F6 (19) control type P with encoder inter	face

The range 0x00700000 to 0x0070FFFF is reserved for device type S6.

de09	product code	0x2009
Value	Device type	
0x00700000	S6 control type K	
0x00700001	S6 control type A	

5.11.2 Device type, software version and date

The hardware version of the control board can be differentiated with de13.

de13	ctrl type			0x200D			
Bit	Function Value Plaintext		Plaintext	Notes			
·	for control type F6-K						
01	hus typo	0	EtherCAT/Can	Fieldbus type supported by the bardware			
01	bus-type	1	VARAN/Can	Fieldbus type supported by the hardware			
25	Hw-version	4	3	only external 24V supply			
		·	for control type S	66-K			
01	bus-type	0	EtherCAT/Can	Fieldbus type supported by the hardware			
01	bus-type	1	VARAN/Can	rielabas type supported by the hardware			
			for control type F	F6-A			
0	Hw-version	1	1	not PCB version 1A			
			for control type F	F6-P			
		4	enc. intf. + relay + 485				
07	Hw-version	5	no enc. intf. + safety relay				
		6	enc. intf. + safety relay				
158	hardware	256	F6				
130	type	512	S6				
2316 safety type 327680 sm type 5		sm type 5					

The device type can be differentiated within a device series (F6/S6) with de15.

de15	ctrl type			0x200F	
Bit	Function	Value	Plaintext	Notes	
07	modul type	32	module: SAM	Definition of the software type (single a	xis module)
	hardware type	8192	Control K / EtherCAT	Determination of the control and/or fieldbus type CAN is add	
815		8448	Control K / VARAN	tionally included with all types. (Exception: a hardware revision for control typ With control type A or P the fieldbus type is inchardware	
		12288	Control A		be is independent of the
		16384	Control P		

The software version of the single modules can be read with the following objects. The display is a hexadecimal value.

de16	ctrl software vers	0x2010			
de18	fpga core version	fpga core version			
de24	power software v	ersion		0x2018	
de42	safety software v	ersion		0x202A	
de44	KTY software version			0x202C	
de52	enc interf software version			0x2034	
Bit	Function	Value	Notes		
07	Number of date codes	0FF	Is increased in case of minor modifications which new parameters or error correction.	require no	
815	Customer ver- sion	0FF)FF Is used to identifier customer / special versions		
1623	Minor version 0FF Is increased when introducing new parameters or functions			functions	
2431	Major version 0FF Increased only at general changes				

Example: Software version 0201000Ch (hexadecimal) = 33619980 (decimal)

Main version: 2

Sub-version: 1 standard version date code: 12dec (= 0C hex)

	de50	fieldbus stack version	0x2032						
		Note							
Ī		Shows the stack version of the RTE module of the adjusted fieldbus							

The software date can be read with the following objects:

de17	ctrl software date	0x2011	
de19	fpga core date	0x2013	
de25	power software date		0x2019
de43	safety software date		0x202B
de45	KTY software date	0x202D	
de51	fieldbus stack date	0x2033	
de53	encoder interf software date		0x2035
Date format	Value		
YYYY.MM.DD (year, month, day)	= YYYY*10000 + MM * 100 + DD	ting the date is dis- rators	

Example: Software date 20.01.2016 => display: 20160120

5.11.3 Power unit identification

The power unit is identified with de27 inverter data ID. The value is displayed decimal, separated by dots.

de26	saved inverter data ID			0x201A
de27	inverter data ID			0x201B
Bit	Function Value		Notes	
07	Power unit code		Identification number of the various power vice size class	units within a de-
815	Version number		Version number of the power unit data	
1623	Housing identification	0255	e.g. 02, 04, 06,	
2431	Device size		Identification for inverter rated power (=> Operating instructions with technical contents and the contents are contents as a content of the	lata)

Example: the first released version of an 11F6 kW F6 inverter in housing size 2 with power unit code 53 would display the following value:

de27 = 15.2.1.53

If the "saved" value is different to the actual value, the control card has been set to a power unit with different ID.

This causes the inverter changes to error 64 "ERROR power unit type changed".

By writing on parameter de27, the actual "inverter data ID" is adopted as "saved inverter data ID" and the error can be reset.

The following data can be read by way that the most important inverter identification data are also available if no manual is currently available:

ld	Function	
de28	inverter rated current	Inverter rated current [in 0.01A]
de29	inverter maximum current	Inverter software current limit [in 0.01A] for closed-loop operation (depending on the inverter type and the setting of is35 set current limit). The limit for the control can be decreased by other parameters (dr12, is11)
de30	inverter rated voltage	Inverter rated voltage [in 0.1V]
de31	inverter maximum DC voltage	Tripping threshold overvoltage error [in 0.1V]
de32	inverter minimum DC voltage	Tripping threshold undervoltage error [in 0.1V]
de33	inverter rated switching frequency	Rated switching frequency [in 0.01 kHz]
de34	inverter maximum switching frequency	Maximum available switching frequency (at reduced current)
de35	inverter intermed.circuit capacity [uF]	Capacity of the capacitors in the DC link
de36	braking transistor default level	Value at which the braking transistor is activated voltage- dependent in the default setting. Value "zero" means that the device does not contain a braking transistor.

ld	Function	
de120	max output frequency	Maximum output frequency if the output frequency exceeds this value, error 107 "ER-ROR over frequency" is triggered

Index	ld- Text	Sub- Idx	Name	Function
		1	current scale value	Full scale of the drive controller (DC current)
0x2050	de80	2	power unit data format	O: basic version 1: additional ol2 data supported Value 1 means that temperature-dependent OL2 data are available to support is17.

5.11.4 Serial numbers

de00 device serial number contains the serial number of the inverter.

de38 safety serial number and de40 safety production info provide the unique identification number for the FS related hardware.

Unwritten parameters are for internal use only.

6 Motor Control

6.1 Interface to the encoder

The parameters for setting the speed measurement via channel A and B and status parameters are contained in the two ec groups.

The parameters are identical except for the change-over of the operating voltage ec14 and the parameters for data storing in the encoder ec46 / ec47. These are only available for channel A.

The addresses for channel B have an offset of 0x2000 compared to channel A.

The names of parameters for channel B are the same and end extra with "B".

Example:

0x2810 encoder type \rightarrow Adjustment of the used encoder on channel A 0x4810 encoder type B \rightarrow Adjustment of the used encoder on channel B

6.1.1 Terms and definitions used here

Since some terms in connection with encoders are often misleading, here there is a description of some terms used in this manual:

TTL signals	Rectangular difference signals according to RS422/RS485 specification		
Sine/cosine, 1Vpp, 1Vss	Sinusoidal difference signals with 1Vss amplitude		
Increments per revolution	Number of signal periods per revolution		
Unit "increments" and position in increments	The resolution per signal period is 4 for encoders with incremental signals. That means, the resolution per revolution is the number of signal periods x 4. ¼ signal period is called here "increments". If, for example, a TTL encoder with 2500 signal periods per revolution is rotated by one revolution, the position in increments changes by 10000 increments. This increment value is not used in the actual position display in ru33 or the st parameters. Standardisation ru33: 65536 always corresponds to 1 revolution		
High-resolution	The position within one signal period is also determined in case of sinusoidal incremental signals. This resolution is always 13 bit and is added to the position in increments. The accuracy is dependent on the encoder, lines, evaluation circuit, signal frequencies, component tolerances and is significantly lower than 13 bit.		
Zero signal or reference mark	With rotary encoders, one speaks of zero signals, with linear encoder reference marks. But it is physically the same and is a digital signal, which is 1-active only at a certain signal period and 0-active otherwise. Thus it forms reference points at non-absolute encoders, which must be passed in order to be able to evaluate them. With rotary encoders, a zero signal occurs once per revolution at always the same angle of rotation. Linear encoders can have one reference mark on the travel path or several.		

Several reference marks can either have the same distance of signal periods to each other (periodic reference marks), or the distances are so different from reference mark to reference mark that an absolute reference point can be calculated from them (distance-coded reference marks).

6.1.2 Encoder types

Since the encoder evaluation can evaluate different encoder types and many parameters are only necessary for certain encoders, the differences are shortly described here:

Generally absolute and non-absolute encoders can be differentiated first.

6.1.2.1 Absolute encoder

Absolute encoders supply after switching on directly the "right" position value, i.e., the reference of position and rotor is always maintained. Singleturn encoders can only restore the position within one revolution after switching on. Multiturn encoders temporary store a certain number of whole revolutions depending on the encoder type.

Absolute encoders are different in:

> Resolver

Resolver are always singleturn encoders

Digital encoders (Endat digital, BiSS, SSI)

The position value is determined by the encoder itself and transmitted via a fast serial communication in each control cycle for encoder evaluation.

Absolute encoders with incremental signals (Endat+1Vss, SinCos-SSI, Hiperface, SinCos with absolute track)

After switching on the device, the absolute position is determined once from the encoder. Since the detection of this position is either too slow (e.g. slow serial communication at Hiperface) or too inaccurate (sine-cosine), it is used only as starting value. Only the incremental signals, which can be counted and evaluated in real-time are used from this starting value.

Then the absolute position is only read in order to compare it with the incremental counted position for diagnosis purposes (monitoring) (every 8 ms or depending on the encoder typ).

If more incremental signals are counted e.g. by EMC than actually overrun, there is a deviation between incremental and absolute position. This position deviation is corrected, i.e., the incremental counted position is shifted again to the absolute position. An error message is triggered if these position deviations appear so often that they can not be corrected any more.

The position correction function can be parameterized under 6.1.6.5 "Position monitoring and correction", page 233.

6.1.2.2 Non-absolute encoders

HTL, TTL, SinCos without absolute track

These encoders always have incremental signals, either square-wave or sinusoidal.

The position after switching on is always 0, i.e., without reference to the rotor.

If the encoders have a zero signal, the reference to the zero position (ec31) can be done over this, as soon as the signal has been passed.

The zero signal is also used to check and correct wrong counted incremental signals (e.g., due to EMC). The position correction function can be parameterized under 6.1.6.5 "Position monitoring and correction", page 233.

6.1.2.3 Supported encoders

Which encoders are generally supported and which physical limitations apply (e.g. maximum signal frequencies, lines to be used, signal forms etc.) can be found in the installation manual associated to the device. This chapter describes only the software restrictions for certain encoder types.

All standard SinCos, TTL and HTL encoders are supported within the following parameters described below.

> Endat

Variants of the EnDat interface and the different "EnDat" terms:

The EnDat interface is a digital connection to read or write the position and a wide variety of other data of the encoder.

The commands required for this are summarised in the <u>command set</u>. The newer command set "EnDat 2.2" has more commands than its previous version "EnDat 2.1" and is downward compatible to it.

Many EnDat encoders have incremental signals in addition to this digital interface, e.g. to obtain a higher-resolution position. These signals can be 1Vpp, HTL or TTL signals.

The incremental signals and the encoder set is indicated with the <u>order designation</u>, which is also on the nameplate of the encoder.

The <u>order designation</u> "EnDat22" must not be confused with the <u>command set</u> "EnDat 2.2".

Currently there are e.g. the following order designations:

Bestellbezeichnung	Befehlssatz	Inkrementalsignale
EnDat01 EnDatH EnDatT	EnDat 2.1 oder EnDat 2.2	1 Vss HTL TTL
EnDat21		-
EnDat02	EnDat 2.2	1 V _{SS}
EnDat22	EnDat 2.2	_

Figure 62: Order designation

Supported EnDat encoder

The encoder evaluation recognises whether the encoder has the "EnDat 2.1" or "EnDat 2.2" command set and can evaluate both variants.

The evaluation only distinguishes whether the 1Vpp signals are to be evaluated (ec16 = "EnDat+1Vpp") or not (ec16 = "EnDat digital").

Also encoders with 1Vss signals can be evaluated purely digital. This can be useful for diagnostic purposes, for example, or if the digital position has a higher resolution than can be achieved with the 1Vpp signals.

It follows that, with regard to the interface, first of all all encoders with all "EnDat.." order designations with ec16 = "EnDat digital" can be evaluated. If the encoder still has 1Vpp signals,ec16 = "EnDat+1Vpp" is also possible. TTL and HTL signals are not evaluated.

In addition, there are the following restrictions:

The EnDat encoder type can be read out from the encoder (word 14 of the manufacturer parameters). Only the following identifiers are supported:

0xC0: Singleturn rotary encoder and angle encoders

0xE0: Multiturn rotary encoder with gear

0xD0: Multiturn rotary encoder with battery buffering (see also 6.1.9, "Operation of EnDat multiturn encoders with battery buffering", page 243)

0x40: Absolute length measuring device (with or without 1Vpp signals)

The new, always purely digital EnDat 3 interface is physically different and is not supported here.

Hiperface

Hiperface encoders are only supported by the evaluation if they are either known to it or if newer encoders have the so-called "extended nameplate 0xFF". This contains additional information about the encoder, such as increments per revolution, maximum temperatures, encoder designation, and also allows an evaluation if the concwened encoder type is not explicitly stored in the encoder evaluation.

Which Hiperface encoders are currently supported, is described in chapter 6.1.2.6, "Display detected encoder type", page 216.

Hiperface encoders must ALWAYS be supplied with 8V.

> BiSS

There are different variants from this (copyrighted) open interface, which are also partly changed by the different encoder manufacturers. Although there are possibilities for standardization (profiles), each encoder which is not explicitly tested and released can not be supported once. These two BiSS variants are differentiated in this manual: BiSS with electronic type plate (EDS) and BiSS-C-unidirectional or without EDS

Clock frequency is 3.125 MHz

BiSS with EDS:

BiSS encoders with electronic name plate have a non-volatile memory, from which all parameters which are required for the evaluation of the encoder can be read out. Additionally, motor data can be stored and read out again in the encoder. That means, only encoder type ec16 must be set to "BiSS" to evaluate these encoders.

All BiSS Acuro encoders from the Hengstler company belong to this category and are fully supported.

From firmware version 2.4, encoders are also supported if the stored data correspond to the BiSS profiles BP1 ("Standard Rotary Encoder") or BP3 ("Standard Encoder Profile").

BiSS-C-unidirectional:

These BiSS encoders do not allow memory access or have no memory. As a result, all required values for communication must be adjusted via parameters (parameter: 6.1.6.6, "Encoders with SSI track and BiSS without electronic name plate", Page 234)

Additionally, the data word must be structured as follows:

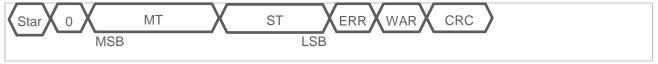


Figure 63: Structure data word BiSS

Start: Start bit is always 1

0: The bit following the start bit is always "0"

MT: Multiturn resolution ec41
ST: Singleturn resolution ec40

ERR: Error bit 0-active WARN: Warning bit 0-active CRC polynomial: $6 \text{ bit: } x^6 + x^1 + 1 \rightarrow 0x43$

These include e.g.encoders of the company Renishaw or Kübler

other BiSS encoders:

many other tested encoders contain only parts of the functionality of BiSS with EDS, for example:

they only allow read access, but no write access

they contain no / usable data

they generally correspond to the specifications of the BiSS profile BP3 for encoders, but differ in one point from them

the functionality / the memory content change with the date of the firmware of the encoder

These encoders can often be evaluated although as BISS-C-unidirectional encoder, if the data word is configured accordingly.

Initialization of BiSS encoders:

If the stored manufacturer ID in the encoder is unknown to the encoder evaluation, it attempts to establish communication with the encoder based on the stored data in the encoder. If this fails, an error message is output and possibly the encoder can be evaluated as BiSS-C unidirectional.

Even if the communication can be established error-free, it is possible that position values or speeds are wrong because the data stored in the encoder do not correspond to the profile or manufacturer specifications, which sometimes occurs in practice.

Based on the detected encoder type in ec17 it is possible to evaluate to what extent the connected encoder has been detected.

If the COMBIVIS plaintext for ec17 contains the manufacturer name and the encoder type (e.g. 65 "BiSS Hengstler Acuro AC36 Singleturn"), there is an encoder

connected which is stored in the encoder evaluation and which is completely known.

If ec17 only contains the manufacturer name (e.g. 76 "BISS Mode Hengstler, Singleturn" or 77 "BISS Mode Hengstler, Multiturn"), the encoder evaluation could read a manufacturer ID from the encoder without knowing the exact encoder type.

The values of 74 and 75 "BiSS Mode C, singleturn or multiturn, + EDS type label" indicate that the manufacturer identification is unknown, but the encoder contains an el. nameplate, which corresponds to the BiSS profile BP3.

Values 61 and 62 "BiSS Mode C, singleturn or multiturn" (i.e. without el. nameplate) mean that the encoder does not allow memory access or it is a BiSS-C unidirectional variant.

If value 84 "BiSS Mode C, EDS containing inconsistent data" is displayed, the encoder has an electrical nameplate, but the data does not correspond to the profile definition or they are inconsistent.

In this case, the values must be set as for BiSS-C unidirectional encoders, because it cannot be ensured that the values from the encoder are correct.

The display of the manufacturer name in ec17 means, encoders of this manufacturer have already been tested. However, it is recommended to test actual encoders again.

BiSS linear encoders:

Only linear encoders with BiSS-C unidirectional are supported.

> Linear measuring devices

Different linear encoders are supported:

- EnDat: absolute linear encoders
- BiSS-C, but only unidirectional, i.e. without electronic nameplate
- SSI
- Incremental linear encoders with 1Vpp or square-wave signals, with periodic, distance-coded or without reference marks.

For more information on linear encoders, see 6.1.7, "Operation of absolute linear encoders", page 239 and 6.1.8 "Operation of non-absolute linear encoders (with and without reference marks))", page 242)

6.1.2.4 List with tested encoders

The following list contains a selection of tested absolute encoders with different protocols and interfaces. "Standard" incremental encoders with SinCos, TTL or HTL signals are not listed:

Manufacturer	Type designation	Туре
Heidenhain	EQI1317, ECN1313, EQI1329,	EnDat Single and Multiturn rotary en-
	EQI1331, EQI1337, EQN1337,	coder
	EQN1325, ROQ425	
	ERN1188, ERN1387	SinCos with absolute track
	ECN1313	SinCos with SSI
	EBI135	EnDat Multiturn with battery buffering

Manufacturer	Type designation	Туре
	LC185, LC281	absolute EnDat linear encoder
	LS187C	Incremental linear encoder with dis-
		tance-coded reference marks
Hengstler	AD34, AD35, AD36, AC58	BiSS Single and Multiturn
Kübler	IK.IT.02C-CA00	BiSS Multiturn
Kübler	8.F5863.1222.G221	BiSS Multiturn
Posital Fraba	KCD-BC00B-1617-C10C-2RW	BiSS Multiturn
Pep-	AVM58N-086AARHGN-1212	SSI Multiturn
perl+Fuchs		
Renishaw	RA18BAA209 B30A,	BiSS Singleturn
	RA26BAA104B30A	
	RL26BAT050B05A	BiSS linear encoder
Sick-Steg-	SEL37, SEK90, SEK160, SKM36,	Hiperface Single and Multiturn rotary en-
mann	SRS50, SRM50	coder
	AFM60	SSI Multiturn
TWK	CRE65	SSI Multiturn

Table 6-1: Selection of tested encoders

6.1.2.5 Setting encoder type

Which encoder or which signals shall be evaluated is adjusted in ec16 encoder type.

Index	Id-Text	Name	Function
0x2810 0x4810	ec16	encoder type	Adjustment of the encoder signals to be evaluated

The identification and initialisation of the connected encoder is triggered by the write access. This process can take upto several seconds.

If Endat encoders shall be evaluated at both channels, only Endat digital is possible at both channels.

If an error is displayed in ec00 status encoder interface it can be helpful for diagnostic purposes to set a different encoder type first, in order to check individual signals. For example at a Hiperface encoder, only the evaluation of the 1Vss signals can be activated with ec16 = 3 "sine/cosine without absolute track without zero signal". By way it can be checked whether these signals are correctly connected and whether the sense of rotation and the number of signal periods are correct.

Endat encoders with 1Vss signals can only be evaluated digitally. The serial communication can be checked with it.

When switching between digital evaluation and evaluation with 1Vpp signals, the position in the ru parameters changes slightly. There is a difference of half a signal period because the digital position value is adapted to the 1Vpp signals.

The selection of an encoder type with or without zero signal means that the zero signal is evaluated or not evaluated, independent whether the encoder actually provides a zero signal.

The following encoder types at channel A are possible in ec16:

ec16	encoder type	0x2810	
Value	Encoder type		
0	no encoder evaluation		
1	TTL without zero signal		
2	TTL with zero signal		
3	Sine/cosine without absolute track without zero signal		
4	Sine/cosine without absolute track with zero signal		
5	Sine/cosine with absolute track without zero signal		
6	Sine/cosine with absolute track with zero signal		
7	Sine/cosine with SSI		
8	SSI		
9	Resolver		
10	Endat + 1Vpp		
11	Endat digital		
13	Hiperface		
14	Linear BiSS-C unidirectional		
15	BiSS		
17	Linear encoder with SinCos signals and periodic reference marks		
18	Linear encoder with TTL signals and periodic reference marks		
19	Linear encoder with SinCos signals and distance-coded reference marks		
20	Linear encoders with TTL signals and distance-coded reference marks		

NOTICE

➤ The supply voltage of the encoder must always be set to 8V for Hiperface encoders (ec14).

The following encoder types at channel B are possible in ec16:

ec16	encoder type B	0x4810		
Value	Encoder type			
0	no encoder evaluation			
1	TTL / HTL without zero signal			
2	TTL / HTL with zero signal			
8	SSI			
11	EnDat digital			
14	Linear BiSS-C unidirectional			
15	BiSS			
16	Incremental encoder emulation			
18	Linear encoder with TTL / HTL signals and periodic reference marks			
20	Linear encoder with TTL / HTL signals and distance-coded reference marks			
21	Inductive sensors (only for F6P and S6P devices)			

6.1.2.6 Display detected encoder type

The detected encoder type by the encoder interface is displayed in ec17 detected encoder type:

Index	Id-Text	Name	Function
0x2811	ec17	detected encoder type	Display the detected encoder type
0x4811	CCT7	detected encoder type	Display the detected effected type

By writing on any parameters (e.g. ec14, ec16, ec28, ec29, ec32, ec35), parts of the initialization and encoder detection are executed once again, depending on the

encoder to be evaluated. The actual position is then set to the same value as after switching on, e.g. for non-absolute encoders (TTL, HTL or sine/cosine) to 0.

For encoders that have or could have a zero signal or reference marks, the recognised encoder type goes to 1 "encoder identification running" after switching on. Here the differences:

Encoder type with zero signal (ec16)

If an encoder type with zero signal is set, the encoder identification is active until the encoder has passed at least one complete revolution with two zero signals. In this case, the passed zero signals and the covered periods per revolutions are monitored and checked with the setting in ec29.

Then the encoder identification is completed and either the recognized encoder type is displayed or an error message is triggered if one of the checks has failed. Now the position of the zero signal is also available in ec31.

As long as no second zero signal is passed or always only the same one, the recognised encoder type ec17 remains at 1 "encoder identification running". But apart from this display, this has no further effects. All monitoring is already running.

An error is triggered if no zero signal has been passed after three revolutions. How many increments are regarded as revolution is depending on the setting in ec29 periods per revolution.

Example:

If the increments per revolution of an encoder is 1024, but 2048 pulses per revolution are adjusted in ec29, the error is triggered after 3 * 2048 pulses = 6 revolutions (3 * 2048 / 1024).

> Encoder type without zero signal (ec16)

If a zero signal is detected, an encoder with a zero signal is displayed in the detected encoder type, but there is no further evaluation.

The detection of a zero signal here only means that the zero signal input of the encoder evaluation is in any manner connected If, for example, "TTL without zero signal" is adjusted as encoder type in ec16 and a SSI data signal is connected to the zero signal input, an encoder with zero signal is displayed in ec17 detected encoder type. Whether the detected signal is actually a zero signal can be checked by activating an encoder type with zero signal. During the encoder identification, the described checks (in the previous item) of the zero signal are executed then.

The following encoder types are defined in ec17:

ec17	detected encoder type	0x2811 / 0x4811
Valu	detected encoder type	Value ec16
е		
0	No encoder detected	0
1	Detection is running Only for encoders that (could) have a zero signal. The value changes to the detected encoder type, if the encoder has been moved one complete revolution with two zero signals. In this case, the traversed zero signals and the covered periods per revolutions are monitored and checked with the setting in ec29.	1 - 6
2	Detected encoder is not supported	

ec17	detected encoder type	0x2811 / 0x4811
Valu e	detected encoder type	Value ec16
3	TTL / HTL without zero signal	1, 2
4	TTL / HTL with zero signal	1, 2
5	Sine/cosine without absolute track without zero signal	3 - 6, 13
6	Sine/cosine without absolute track with zero signal	3 - 6
7	Sine/cosine with absolute track without zero signal	3 - 6
8	Sine/cosine with absolute track with zero signal	3 - 6
9	Sine/cosine with SSI	7, 8
10	SSI	7, 8
11	Resolver	9
20	Endat not supported type	10, 11
21	only 1Vpp signals were detected, but digital communication is not possible	10, 11
22	Endat 2.1 without 1Vpp, singleturn	10, 11
23	Endat 2.1 with 1Vpp, singleturn	10, 11
24	Endat 2.1 without 1Vpp, multiturn	10, 11
25	Endat 2.1 with 1Vpp, multiturn	10, 11
26	Endat 2.1 ohne 1Vpp, linear	10, 11
27	Endat 2.1 mit 1Vpp, linear	10, 11
28	Endat 2.2 without 1Vpp, singleturn	10, 11
29	Endat 2.2 with 1Vpp, singleturn	10, 11
30	Endat 2.2 without 1Vpp, multiturn	10, 11
31	Endat 2.2 with 1Vpp, multiturn	10, 11
32	Endat 2.2 without 1Vpp, linear	10, 11
33	Endat 2.2 with 1Vpp, linear	10, 11
34	EnDat 2.2 without 1Vpp, battery-buffered multiturn	10, 11
35	EnDat 2.2 with 1Vpp, battery-buffered multiturn	10, 11
40	Hiperface not supported type	13
41	Hiperface SCS 50/60 singleturn	13
42	Hiperface SCM 50/60 multiturn	13
43	Hiperface SRS 50/60 singleturn Hiperface SRM 50/60 multiturn	13
45	Hiperface SKN 30/00 multitum Hiperface SKS 36 singleturn	13
46	Hiperface SKM 36 multiturn	13
47	Hiperface SKM 36 Mullitum Hiperface SEK 37/52 singleturn	13
48	Hiperface encoder with extended type plate 0xFF	13
49	Hiperface without 1Vpp signals	13
52	Hiperface SEL 37/52 multiturn	13
60	BiSS not supported type	15
61	BiSS mode C singleturn unidirectional without el. nameplate	15
62	BiSS mode C multiturn unidirectional without el. nameplate	15
63	BiSS Hengstler Acuro singleturn	15
64	BiSS Hengstler Acuro multiturn	15
65	BiSS Hengstler Acuro AC36 singleturn	15
66	BiSS Hengstler Acuro AC36 multiturn	15
67	BiSS Hengstler Acuro AD36 singleturn	15
68	BiSS Hengstler Acuro AD36 multiturn	15
69	BiSS Hengstler Acuro AC58 singleturn	15
70	BiSS Hengstler Acuro AC58 multiturn	15
71	BISS mode B Baumer Thalheim singleturn	15
72	BISS mode B Baumer Thalheim programmable multiturn	15
73	BISS mode B Baumer Thalheim not programmable multiturn	15
74	BISS mode C, singleturn, with el. nameplate	15

ec17	detected encoder type	0x2811 / 0x4811
Valu	detected encoder type	Value ec16
е		
75	BISS mode C, multiturn, with el. nameplate	15
76	BISS mode C Hengstler, singleturn	15
77	BISS mode C Hengstler, multiturn	15
78	BISS mode C Kübler, singleturn	15
79	BISS mode C Kübler, multiturn	15
80	BISS mode C AMO Absys, singleturn	15
81	BISS mode C AMO Absys, multiturn	15
82	BISS mode C AMO Absys, linear	15
83	BISS mode C AMO, no EDS type plate	15
84	BiSS mode C, EDS contains inconsistent data	15
85	BiSS mode C Posital-Fraba, singleturn	15
86	BiSS mode C Posital-Fraba, multiturn	15
87	BiSS mode C linear encoder	14
120	TTL/HTL, track A has 1-level, track B has 0-level	21 (1)
121	TTL/HTL, track A has 0-level, track B has 1-level	21 (1)
122	TTL/HTL, track A has 0-level, track B has 0-level	21 (1)
123	TTL/HTL, track A has 1-level, track B has 1-level	21 (1)

⁽¹⁾ Details on this at ec35

6.1.3 Position resolution of different encoder types

The resolution of the position within one revolution, which is determined by the encoder evaluation is depending on the adjusted encoder type and the connected encoder.

This position is converted to a fixed format for the display in ru33, 65536 (16 bit) corresponds to one revolution. That means, the lower 16 bit of ru33 are the position within one revolution and the upper 16 bit the whole revolutions.

If the determined position of the encoder has a worse resolution (e.g., 13 bit with resolver) the least significant bits in ru33 are always zero. If the determined position has a better resolution than 16 bit per revolution, the resolution for the display is reduced in ru33, that means: the lower bits of the determined encoder position are omitted.

The different internal functions (e.g. speed calculation, current control) use the full value range of the position detection to a maximum of 32 bit per revolution.

6.1.3.1 Resolver

The position determined by the encoder is resolved with 13 bit, one revolution corresponds to:

• 1 revolution = 2^{13} = 8192

6.1.3.2 Encoder with rectangular incremental signals (TTL and HTL)

A signal period contains 4 edges, which are counted.

The resolution corresponds to 4-fold of the number of pulses per revolution

• 1 revolution = $ec29 \cdot 4$

6.1.3.3 Encoder with sine-wave 1Vss signals (Endat+1Vss, SinCos-SSI, Hiperface, Sin-Cos)

The position is always determined from the 1Vss signals for these encoders. Additionally to the counting of the traversed sine periods, also the position within one sine period is evaluated. Since this high resolution is 13 bit, one revolution corresponds to:

• 1 revolution = $ec29 \cdot 2^{13} = ec29 \cdot 8192$

If these encoders have additional absolute information (digital or analog), this is only used to monitor the incrementally counted position (=> see 6.1.2.1 Absolute encoder).

The resolution of this absolute information is independent of the resolution of the position from the 1Vss signals. Typically, it is also significantly lower.

Example:

The key data of an Endat encoder are specified in the catalogue with:

- "increments per revolution = 512"
- "Positions/U = 2048 (11 bit)"

If this encoder is evaluated with ec16 = 10 " Endat + 1Vpp", corresponds to one revolution:

• 1 revolution = $ec29 \cdot 2^{13} = 512 \cdot 8192 = 2^9 \cdot 2^{13} = 2^{22} = 4194304$

The position here is resolved with 22 bit, although the resolution of the absolute position, which is read out via the serial Endat communication is only 11 bit ("positions/U").

6.1.3.4 Digital encoder (EnDat digital, BiSS, SSI)

Since the position value is directly read out for digital encoders, the resolution of the detected position is also equal to the resolution of this serial position value.

For encoders with electronic type plate (Endat and partly also BiSS), the serial position is automatically read out without additional parameter settings. Therefore the resolution is indicated in the data sheets of the encoder manufacturer.

For evaluation of the Endat encoder from the previous example, the position within one revolution has a resolution of 11 bit at ec16 = 10 "Endat digital".

• 1 revolution = 2^{11} = 2048

If the encoder does not have an electronic nameplate (SSI and partly also BiSS), ec40 SSI singleturn res. must be adjusted according to the data sheet specifications (=> see 6.1.6.6, "Encoders with SSI track and BiSS without electronic name plate").

The resolution is 2^{ec40}, one revolution corresponds to:

1 revolution = 2^{ec40}

•

Example:

ec40 = 12

• 1 revolution = 2^{12} = 4096

6.1.3.5 For all encoders

In addition to the resolution, the control characteristics of a drive are significantly influenced by the accuracy of the position. The accuracy is reduced compared to the position resolution by errors in the encoder, in the signals, the encoder mounting on the motor, the signal transmission, the input circuit, the encoder evaluation, the signal detection, etc.

Example:

A "system accuracy" of \pm 60 angular seconds and a resolution of "positions/U = 2048 (11 bit)" is specified for an Endat encoder in the catalogue.

The resolution of the digital position is calculated by the 11 bit specification:

 360° / 2^{11} = 0,176° per bit = 0,176 · 3600 angular seconds = 632 angular seconds per bit

If the 1Vss signals are evaluated, the position value has a resolution of 22 bit. This corresponds to a position resolution of

 360° / 2^{22} = 0.000086° pro Bit = $0.000086 \cdot 3600$ angular seconds = 0.31 angular seconds per bit

In this case, the error of the position, which already results from the encoder (\pm 60 angular seconds) is many times greater than the resolution (0.31 angle seconds).

6.1.4 Scan time snd speed fluctuations

The speed is calculated from position differences. Therefore, the non-infinite resolution of the position mathematically always leads to a fluctuation of the speed. The finer the resolution of the position, the lower the speed fluctuations.

The scan time is the second influencing variable on the speed fluctuation, i.e. the time between the two position values from whose difference the speed is calculated. The greater the scan time, the lower the speed fluctuation.

From these two mathematical correlations there is a minimal fluctuation of the speed, which always occurs at fluctuation of the position by 1 increment and it can be calculated as follows:

$$\Delta$$
n [] = $\frac{\Delta$ position scan time[min] = $\frac{\text{resolution} \cdot 1000 \cdot 60}{\text{scan time ec26 [ms]}}$ = $\frac{\text{resolution} \cdot 60000}{\text{scan time ec26 [ms]}}$

6.1.4.1 Theoretical fluctuation of the speed due to the position resolution

Minimum speed fluctuation for resolver and default setting of ec26 by the position resolution:

Default setting ec26: 2 ms position resolution for resolver:

1 revolution = 8192 => resolution = 1 / 8192 =

0.0001221

$$\Delta n [rpm] = \frac{0,000121 \cdot 60000}{2} = 3,66 rpm$$

6.1.4.2 Real fluctuation of the speed

Additional to this minimal fluctuation at the real drive there are errors in the signals, the encoder mounting at the motor, the transmission path, the input circuit, the signal detection, etc. These factors cause additional fluctuations of the speed and thus influence the control.

Example for a resolver:

Due to the errors described above, the reliable position resolution is reduced to 10 bit (1 revolution = 1024 = real resolution of the resolver = 1/1024 = 0.000977). When the scan time is set to 250 µs (0.25 ms), there is a speed fluctuation of:

$$\Delta n \text{ [rpm]} = \frac{0,000977 \cdot 60000}{0,25} = 234,4 \text{ rpm}$$

Example for a SinCos encoder

An encoder with a high real resolution must be selected if the dynamics of the application require a short speed scan time. For a SinCos encoder with optical scanning with 2048 increments, the following real resolution is obtained:

Number of signal periods: 2048 increments (corresponds to 11 bit)

High resolution real 8 bit high resolution (instead of the ideal 13 bit)

1 revolution corresponds to $2^{19} = 524288$ real resolution:

resolution = 1 / 524288 = 0.00000191

$$\Delta n \text{ [rpm]} = \frac{0,00000191 \cdot 60000}{0,25} = 0,46 \text{ rpm}$$

6.1.4.3 Effects of the scan time

As shown in the previous chapters, a short scan time causes a very high noise at the speed actual value when using encoders with low position resolution or position

The speed fluctuations can be reduced by increasing the scan time.

This also reduces the achievable dynamic of the speed control circuit and thus of the drive.

However, a hard setting of the speed controller can prevent the noise of the speed. The evaluation which scan time is optimally can be done only in the application.

6.1.5 Status parameters of the encoder interface and encoder

The state of the encoder interface is displayed in ec00:

Index	Id-Text	Name	Function
0x2800	ec00	atatus angadar interfesa	Display in the party of the appendix interfere
0x4800		status encoder interface	Displays the actual status of the encoder interface

ec00	status encoder interface		0x2800 / 0x	4800
Valu e	Name	Function	Position / speed	Parame- ter
0	undefined state	undefined, defect or no communication between encoder evaluation and control	invalid	-
1	interface init active	Initialize the encoder interface	invalid	-
2	wait for encoder type	Wait for encoder type setting in ec16	invalid	-
3	encoder depend init	Encoder dependent initialization	invalid	-
4	enc self initialisation	Encoder initializes itself	invalid	-
5	enc initialisation	Encoder initialisation, e.g. read data, delete error bits in the encoder, etc.) ¹⁾	invalid	-
6	busy position value ok	valid	-	
7	initialisation finished	Initialisation finished	invalid	-
8	wait for end of init	Initialization of speed calculation	invalid	-
9	position value ok	Operation	valid	-
10	interface warning	Encoder interface warning	valid	ec02
11	warning encoder	Warning encoder	valid	ec19
12	busy position value wrong	Request will be processed, e.g. save data in the encoder or error reset	invalid	-
13	error encoder interface	Error encoder interface	invalid	ec01
14	error encoder	Error encoder	invalid	ec18

¹⁾ If the state of ec00 remains at value 5: "enc initialisation" after switching on, the encoder interface waits for missing settings which are required for the encoder evaluation.

- TTL-, SinCos- and SinCos-SSI encoders: ec29 (signal periods per revolution) is still 0.
- SSI-, SinCos-SSI-, and BiSS encoders (only BiSS encoders without el. type plate): SSI singleturn resolution in ec40 is still 0.

ec00 = 5 "enc initialisation" for BiSS means, that no electronic nameplate has been recognized and the interface tries to connect the encoder with the SSI parameters. 6.1.6.6 As soon as a correct response has been recognized by the encoder, the status ec00 changes to 9 "position value ok" (=> see "Encoders with SSI track and BiSS without electronic name plate", Page 234).

This means: if an encoder supported by the software is connected with el. name-plate and the state ec00 nevertheless remains at 5 "enc initialisation", there is a problem in the encoder connection.

If a BiSS encoder *without* el. nameplate is connected on a channel, which is waiting at state 5 and a BiSS encoder *with* el. nameplate is connected on the other channel, the state remains in value 7 "initialisation finished". The position can only

be read cyclically from the encoders when both channels have either completed the initialization or are set to error.

Position and speed values are still valid when the warning function is activated, but in error case they are not valid.

The error state of the encoder interface is displayed in ec01 error encoder interface. The value is 0 if there is no error and unequal 0 if ec00 status encoder interface contains the value 13 "error encoder interface".

The warning state of the encoder interface is displayed in ec02 warning encoder interface. The value is 0 if there is no warning and unequal 0 if ec00 is in status 10 "interface warning".

Warnings and errors from the encoder are determined by the encoder itself and then actively sent by the encoder. The encoder evaluation only transmits the error messages and displays them directly.

The error state of the encoder is displayed in ec18 error encoder. The value is 0 if there is no error and unequal 0 if ec00 is in status 14 "error encoder".

The warning state of the encoder is displayed in ec19 warning encoder. The value is 0 if there is no warning and unequal 0 if ec00 is in status 11 "warning encoder".

More information about warnings and errors 6.1.10, "Error and warning messages" page 244.

6.1.6 Parameters for the encoder adjustment

6.1.6.1 Belonging of parameters to encoder type

Only certain parameters are necessary for the respective adjusted encoder type. The status parameters ec00 to ec19 are always valid for all encoder types.

	Parameter	1: TTL / HTL without zero signal	2: TTL / HTL with zero signal	3: SinCos without abstrack without	4: SinCos without abstrack with zero	5: SinCos with abstrack without zero	6: SinCos with abstrack with zero	7: SinCos with SSI	8: SSI	9: Resolver	10: Endat + 1Vss	11: EnDat digital	13: Hiperface	14: Linear BiSS-C unidirectional	15: BiSS
ec14	encoder interf. gen. settings	×	×	×	×	×	×	×	×	×	×	×	✓	×	×
ec23	system offset (SM)		only	for	syncl	hron	ous r	mach	nines	, ind	eper	nden	t of e	c16	
ec24	ec24 gear numerator		×	×	×	×	x	×	×	×	×	×	×	×	×
ec25	gear denumerator	×	×	×	×	×	×	×	×	×	×	×	×	×	×
ec26	speed scan time	x	×	x	x	x	x	x	x	×	x	×	x	×	×

ec27	speed PT1-time	×	×	×	×	x	x	×	×	×	x	×	x	×	×
ec28	revolution range	-	-	-	-	×	×	×	×	×	×	×	×	×	×
ec29	periods per revolution	✓	✓	✓	✓	✓	✓	✓	-	-	-	-	-	-	-
ec30	Resolver pole pairs	1	-	-	-	-	-	-	-	×	-	-	-	-	-
ec31	zero pulse pos.	×	×	-	×	-	×	-	-	-	-	-	-	-	-
ec32	max. pos. error	×	×	×	×	×	×	×	-	-	×	-	×	-	-
ec33	abs. pos. accuracy	-	-	-	-	×	×	×	-	-	×	-	×	-	-
ec35	pos. calc. mode	×	×	×	×	×	×	×	×	×	×	×	×	×	×
ec36	several encoder functions	-	-	-	-	-	-	-	-	-	×	×	×	-	-
ec40	SSI singleturn res.	-	-	-	-	-	-	✓	✓	-	-	-	-	1)	1)
ec41	SSI multiturn res.	-	-	-	-	-	-	✓	✓	-	-	-	-	1)	1)
ec42	SSI data format	-	-	-	-	-	-	✓	✓	-	-	-	-	1)	1)
ec43	SSI clock freq.	-	-	-	-	-	-	✓	✓	-	-	-	-	-	-
ec44	SSI abs. allocation	1	-	-	-	-	-	✓	✓	-	-	-	-	-	-
ec46	encoder read/write	-	-	-	-	_	-	-	-	-	×	×	×	-	×
ec47	status encoder r/w	-	-	-	-	-	-	-	-	-	×	×	×	-	×
ec50	virtual rounds for linear enc.	-	-	-	-	-	-	-	-	-	×	×	×	×	-

	Parameter ect/ encoder interf_gen_settings		17: Lin. SinCos, period. Refmark.	18: Lin. TTL, period. Refmark.	19: Lin. SinCos, abscod. Refmark.	20: Lin. TTL, abstcod. Refmark.			
ec14	encoder interf. gen. settings	×	×	×	×	×			
ec24	gear numerator	-	×	×	×	×			
ec25	gear denumerator	-	×	×	×	×			
ec26	speed scan time	-	×	×	×	×			
ec27	speed PT1-time	-	x	×	x	×			
ec28	revolution range	-	-	-	-	-			
ec29	periods per revolution	✓	✓	✓	✓	✓			
ec30	Resolver pole pairs	•	•	-	-	-			

ec31	zero pulse pos.	-	×	×	×	×			
ec32	max. pos. error	-	×	×	×	×			
ec33	abs. pos. accuracy	-	-	-	-	-			
ec35	pos. calc. mode	1	×	×	×	×			
ec36	several encoder functions	-	-	-	-	-			
ec40	SSI singleturn res.	-	-	-	-	-			
ec41	SSI multiturn res.	-	-	-	-	-			
ec42	SSI data format	1	-	-	-	-			
ec43	SSI clock freq.	-	-	-	-	-			
ec44	SSI abs. allocation	1	-	-	-	-			
ec46	encoder read/write	-	-	-	-	-			
ec47	status encoder r/w	-	-	-	-	-			
ec50	virtual rounds for linear enc.	-	×	×	×	×			

Explanations

- has no influence to this encoder type.
- x must be adjusted depending on the application. However, the encoder evaluation is also possible.
- ✓ must be adjusted for this type, otherwise evaluation is not possible.
- must only be adjusted for BiSS unidirectional or BiSS encoders without electronic nameplate.
 This parameter has no influence for BiSS encoders with electronic nameplate.

From this table it can been seen, that operation of Resolver, Endat and BiSS (with el. nameplate) directly after default set loading it is only possible with the setting of ec16.

6.1.6.2 Encoder signals

Value range for whole revolutions ec28 revolution range

Index	Id-Text	Name	Function
0x281C 0x481C	ec28	revolution range	Defines the value range for whole revolutions

Max. 65536 revolutions are always counted at singleturn encoders. The counting method of the revolutions can be adjusted here for multiturn encoders.

ec28	revolution	range	0x281C / 0x481C
Value	Name	Note	
0	direct	If the multiturn range of the encoder is left, the revolutions change spectively to max. revolution value of the encoder (underflow). Position remains the same even after switching on/off.	e to 0 (overflow) re-
1	16 Bit	If the multiturn range of the encoder is left, the revolutions are stil overflow occurs after 65535 revolutions. After switching off/on, the revolutions that exceeded the multiturn that the position can be different after switching off/on.	

ec28	revolution	range	0x281C / 0x481C
Value	Name	Note	
2	16 Bit and sav- ing	Multiturn encoder: If the multiturn range of the encoder is left, the revolutions are still overflow occurs after 65535 revolutions. The revolutions counted beyond the multiturn range are stored not switching off/on they are calculated with the position of the encode sition remains the same. If this function is activated, eventually previously counted overflow Precondition: - When the unit is switched off the encoder shall not be turned more multiturn range. - The non-volatile storing must be completed before the unit is switched off the encoder shall not be stored non-volating leturn encoders: Accordingly, the counted revolutions can also be stored non-volating leturn encoders (e.g., resolver, SinCos with absolute track etc.). Precondition: - When the unit is switched off the encoder shall not be turned more olution. Non-absolute encoders: The setting of this value is not possible ("data invalid") for non-absolute track).	on-volatile, and after ler by way that the pows are deleted. ore than half of its witched off. tile for absolute sinore than a quarter revore

NOTICE

Parameter ec28 must be set to 1 or 2, if the value range shall be passed at a multiturn encoder. Otherwise, there is a jump in the position measurement when passing the multiturn range.

Signal periods per revolution ec29 periods per revolution

ec29	periods per revolution	0x281D / 0x481D
Value	Meaning	
02 ³² -2	Number of signal periods per revolution	

If the encoder has incremental signals, this parameter displays the number of signal periods per revolution (= increments per revolution). The number of periods of the encoder must be set here for TTL and sine-cosine encoders (ec16 = 1...7). If the encoder interface can read out this value from the encoder (e.g., at Endat, Hiperface, BiSS with el. nameplate), it is displayed here and it can not be changed. With activated incremental encoder evaluation at channel B, the number of signal periods per revolution are adjusted. The maximum possible value is 16384.

Virtual revolutions for linear encoders ec50 virtual rounds for linear encoder

ec29	periods per revolution	0x281D / 0x481D
Value	Meaning	
02 ³² -2	"Virtual revolution", means the changing of numbers of the electric cording to the whole number of motor pole pairs are passing.	

Only for evaluation of linear encoders.

For digital encoders (EnDat digital), the amount by which the digital position word changes is set here.

For encoders with incremental signals (EnDat+1Vss, Hiperface, SinCos, TTL), the number of signal periods is set here.

This value also determines how the linear positions and speeds are converted into rotative positions and speeds and displayed in e.g. ru33 and ru09.

Further information: 6.1.7, "Operation of absolute linear encoders", page 239

Number of resolver pole pairs ec30 Resolver pole pairs

ec30	abs periods number	0x281E / 0x481E
Value	Meaning	
010	Resolver: Number of pole pairs	

Resolvers with pole pair number 1 (i.e. 2-pole) can be used for motors with any pole pair number.

If the number of pole pairs is greater than 1, the number of pole pairs of the motor and resolver always match. Here the resolution is higher than for resolvers with pole pair number 1.

Operation is also possible if the number of pole pairs of the motor is an integer multiple of the number of pole pairs of the resolver. Whereby: The larger the factor PPZ motor / PPZ resolver factor, the lower the resolution of the position.

Position of the zero signal ec31 zero pulse pos.

ec31	zero pulse pos.	0x281F / 0x481F
Value	Meaning	
-2 ³¹ -12 ³¹ -1	Display of the position of the zero signal in increments (read-	only)

The encoder detection is active after the initialization of encoders which (could) have a zero signal. This is displayed in ec17 detected encoder type with "1: encoder identification running".

After the first zero signal has been passed, the position of the zero signal is calculated and then displayed in ec31 when the encoder detection is complete, i.e. ec17 displays the detected encoder type.

The position of the zero signal is defined as the distance between the position when switching on (i.e. where ru33 = 0) and the "zero point" of the encoder, e.g. the zero signal or the first reference mark.

It is calculated from the zero signal that is first passed after switching on (or error reset).

The resolution of this value is in increments (= number of signal periods x 4), i.e. different from ru33!

Rotary encoder

Here the reference point is the zero signal. The position of the zero signal is always indicated in positive direction of rotation, i.e. it is always positive.

Example:

The device is switched on with a TTL encoder with 1000 signal periods per revolution. The position value after switching on for non-absolute encoders is always 0. The encoder is at an angle of rotation of 300°, so the zero signal is 60° in positive direction of rotation.

When the encoder detection is finished after the drive has started, the value of ec31 (the position of the zero signal in encoder increments) is 667, i.e.:

$$ec31 = ec29 \cdot 4 \cdot \frac{60^{\circ}}{360^{\circ}} = 1000 \cdot 4 \cdot \frac{60^{\circ}}{360^{\circ}} = 667$$

ru33 has the position value at this position of the zero signal (because it is normalised in 16 bits = 65536 = 1 revolution):

$$ru33 = \frac{667}{ec29 \cdot 4} \cdot 65536 = \frac{667}{1000 \cdot 4} \cdot 65536 = 10928$$

This formula is only valid if the gear factor in ec24 / ec25 is 1.

Linear encoders with periodic reference marks

For linear encoders, the value of ec31 is positive if the first passed reference mark is in the direction of ascending position values (from the switch-on position). If it is in the direction of descending position values, it is negative.

When converting to position parameters such as ru33, it should be noted that for linear encoders these refer to one virtual revolution in ec50, i.e.:

$$ru33 = \frac{ec31}{ec50 \cdot 4} \cdot 65536$$

> Linear encoders with distance-coded reference marks

This variant of the reference mark track, mainly used by Heidenhain, consists of many reference marks which all have a different distance to each other. From these distances, the absolute reference can be calculated if two adjacent reference marks have been passed.

The absolute reference here is also the zero signal position in ec31, which is defined here as the distance between the first reference mark (which is at the beginning of the linear encoder) and the switch-on position.

At the beginning of the scale is the first reference mark (here is an excerpt from the Heidenhain documentation):

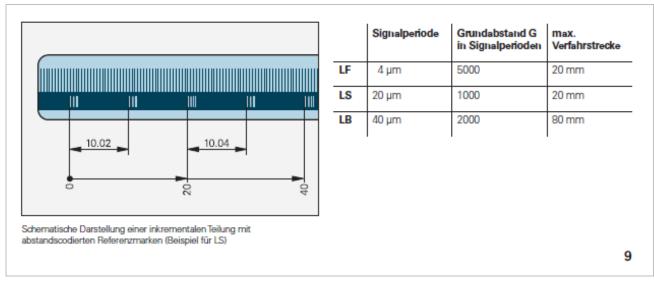


Figure 64: Extract Heidenhain

By way that the zero signal position can be calculated, the so-called basic distance must be passed, or at least half of it. For example, if the basic distance is 1000 periods and a period is $20~\mu m$ long, that is 20~mm.

Only then ec17 changes from 1 "encoder identification running" to the detected encoder type and the calculated position of the zero signal is displayed in ec31.

If the 1st reference mark is in the direction of ascending position values from the switch-on position, the zero signal position is positive. If it is in the direction of descending position values, it is negative.

Mode position calculation ec35 pos. calc. mode

Index	Id-Text	Name	Function
0x2823	002F	noo oolo modo	Defines different settings for position calcula-
0x4823	ec35	pos. calc. mode	tion.

This parameter is bit-coded:

ec35	pos. calc mode		
Bit	Function	Value	Function
0	Evaluation high-resolution	0	High-resolution is evaluated.
U	(at 1Vss signals)	1	High-resolution is not evaluated.
1	Rotation of the position and	0	not inverted
l	speed	2	inverted
2	Resolver evaluation com-	0	Improved resolver evaluation (from V2.6)
	patibility mode	4	Previous resolver evaluation (up to V2.5)
	Only for F6P and S6P de-	0	Tracks A and B are evaluated
34	vices and only for ec16 =	8	Only track A is evaluated
34	21: "Inductive Sensors":	16	Only track B is evaluated
	Evaluation signal tracks		, and the second
	Only for F6P and S6P de-	0	off
5	vices and only for ec16 =		
	21: "Inductive Sensors":	32	on
	Display of signal levels		

Encoder breakage recognition

The encoder signals, which shall be evaluated via ec16 are tested after switched on and cyclically in operation, whether they correspond to the specifications (e.g., RS485 or 1Vss).

A warning is triggered, if deviations from the specifications are detected. An error message is triggered in ec00, if these deviations occur too often.

Whether the axis module changes into error state through this error message of the encoder interface depends on the programming of the pn parameters and the used control mode (cs00).

Pure digital encoder evaluations (ec16 = Endat digital, BiSS and SSI) recognize an interrupted signal line of 10 ms and lower.

The disconnecting time is depending on the adjusted encoder type, the signal levels, signal frequency and position for the evaluation of analog signals.

In an extreme case (e.g.) if a COS line is interrupted at a position where the signal would have a signal difference of 0V, no encoder breakage can be recognized at all!

6.1.6.3 Speed smoothing

The total speed deceleration is calculated by:

ec26 speed scan time / 2 + ec27 speed PT1-time

Speed scan time ec26 speed scan time

This parameter determines the time between the measured positions wherefrom the speed is generated.

Index	Id-Text	Name	Function
0x281A	ec26	speed scan time	Scan time for speed
0x481A	6020	speed scan time	Scan time for speed

ec26	speed scan time	0x281A / 0x481A
Value	Speed scan time	
2	250 μs	
3	500 μs	
4	1 ms	
5	2 ms	
6	4 ms	
7	8 ms	

The minimum possible sampling time is always 250 µs.

This time can be extended for SSI encoders, e.g. with long telegram lengths and low clock frequencies. (Chapter 6.1.6.6 Encoders with SSI track and BiSS without electronic name plate)

For more information about scan time, see chapter 6.1.4 Scan time snd speed fluctuations

Speed filter ec27 speed PT1-time

The filter time of the PT1 filter for the speed calculation is adjusted with this parameter.

ec27	abs periods number	0x281B / 0x481B
Value	Meaning	
0256.000ms	PT1 – filter time resolution 0.001ms	

The PT1 filter time should not be higher than the half scan time. If ec26 = 5 "2ms" is selected, then ec27 should be set to 1ms.

6.1.6.4 Gear factor

A gear factor can be adjusted with ec24 and ec25, which takes effect on all position and speed calculations of the encoder interface before the position and speed are internally transmitted to the control.

The position before the gear factor is displayed in ru38.

The displayed values in the speed parameters (e.g. ru08 / ru09) or position parameters (e.g. ru33) include already the gear conversion factor, except for ec31 and ec33.

If the number of motor revolutions is adjusted in ec24 gear numerator and the number of speed encoder revolutions in ec25 gear denominator, then the position and speed related to the motor shaft is displayed in the inverter parameters.

Gear factor numerator ec24 gear numerator

Position and speed are multiplied with this value.

ec24	gear numerator	0x2818 / 0x4818
Value	Meaning	
065535	Multiplier for position and speed	

Gear factor denominator ec25 gear denominator

Position and speed are divided by this value.

ec25	gear denominator	0x2819 / 0x4819
Value	Meaning	
065535	Divisor for position and speed	

6.1.6.5 Position monitoring and correction

Maximum position error (position monitoring function) ec32 max. pos. error

ec32	max. pos. error	0x2820 / 0x4820
Value	Meaning	
0180° el.	Position monitoring function: Maximum permitted deviation between incremental counted position. 180° el: position monitoring is switched off, neither be triggered.	•

For absolute encoders with incremental signals

A warning is triggered in ec02 warning encoder interface if the cyclically determined deviation between incremental and absolute position is higher than the adjusted value in ec32. An error is triggered, if the deviation is repeated several times in succession.

ec32 max pos error is expressed in (electrical) degrees, since a deviation of just a few encoder signal periods in combination with high poled synchronous machines may have been dramatic effects for encoders with low resolution.

The position error in increments is calculated as:

max. position error [inc] = ec29 * 4 [inc] * ec32 [°] / 360° / motor pole pair number

Example: If a max. position error of 20° is electrically adjusted in ec32, the following consequences occur for a motor with 3 pole pairs and an encoder with 1024 periods per revolution: The position monitoring triggers a warning message, if the incremental position has moved from the absolute position by 76 increments or 19 signal periods.

For non-absolute encoders with zero signal

The only difference to position monitoring for absolute encoders is that the incremental position is compared with the zero signal (instead with the absolute position).

The first passed zero signal is taken as start value and all subsequently detected zero signals are compared with it. Even if the same zero signal is always passed when turning back and forth by just a few degrees.

Special case SinCos encoder with absolute track without zero signal

Here the incremental position is compared with the absolute position. The maximum deviation is fixed (mechanically) adjusted to 16° and can not be changed.

Accuracy of the absolute position (position correction function) ec33

ec33	abs. pos. accuracy	0x2821 / 0x4821
Value	Meaning	
465535 Inc.	Deviation between incrementally counted encoder increments and the encoder, from which the incremental position is set back to the 65535 Inc: Position correction is switched off	•

For absolute encoders with incremental signals

If the determined deviation between incremental and absolute position is higher than the value in ec33 (standardisation encoder increments), the incremental position is set back to the absolute position via ramp and with filter. If value 4 is set, a deviation is corrected by a signal period.

This can prevent position deviations, which could be caused by interference pulses during continuous operation.

Some encoders have speed-dependent a systematic error between absolute position and incremental position. Then the position correction function would adjust the actual (correct) incremental position to the wrong (delayed) absolute value. This (error) correction would be reversed at low speed, whereby a permanent intervention of the correction function occurs.

This behavior can lead to disturbing influences on the drive and can be prevented by increasing the minimum position difference from which the position correction function starts with the correction.

SinCos encoders have a relatively inaccurate analog absolute position. The start value for the correction must be adjusted correspondingly high (e.g. ec33 = 80).

6.1.6.6 Encoders with SSI track and BiSS without electronic name plate

Since the required parameters for the communication can not be determined from the encoder for BiSS unidirectional and BiSS encoders without electronic name plate, some SSI parameters are also used for these BiSS variants.

More information about supported BiSS encoders => 6.1.2.3 "Supported encoders", page 210

SSI / BiSS resolution ec40 / ec41 SSI singleturn / multiturn res.

Index	Id-Text	Name	Function
0x2828 0x4828	ec40	SSI singleturn res.	Adjusts the singleturn resolution in bit
0x2829 0x4829	ec41	SSI multiturn res.	Adjusts the multiturn resolution in bit

These parameters must also be adjusted for BiSS-undirectional and BiSS encoders without electronic name plate.

The data word length is always ec40 SSI singleturn res. + ec41 SSI multiturn res. Data bits, that need to be clocked, but do not have a function or do not belong to the position value are not supported (except the power fail bit). For example, there are encoders which must output 32 bit clocks, the first 8 bits are always 0 and only the last 24 bits contain the position value.

The data word length must be between 8 bits and 48 bits.

SSI / BiSS data format ec42 SSI data format

Index	Id-Text	Name	Function
0x282A	0042	CCI data format	Calastian of the CCI data format
0x482A	ec42	SSI data format	Selection of the SSI data format

These are the setting possibilities according to the SSI specification:

ec42	SSI data format /	SSI data	a format B	0x282A / 0x482A
Bit	Function	Value	Plaintext	Function
		0	PFB off	Power Fail Bit off
01	SSI PFB mode	1	PFB at start of da- taword	Power Fail Bit at the beginning of the data
01	331 FFB IIIOGE	2	PFB at end of da- taword	Power Fail Bit at the end of the data
		3	reserved	Reserved
2	even parity	0	no parity check	No parity check
	check	4	even parity check	Even parity check
3	Data format	0	fir tree	Fir tree
3	Data format	8	serial right aligned	Serial right-justified
4	SSI data code	0	binary	Binary code
4	SSI data Code	16	gray	Gray code

Some encoders send a power-fail bit (additionally to the position values ec40 and ec41) which is logic 1 in normal operation and becomes logic 0 if the encoder detects an error status, e.g. too low operating voltage.

Only the setting "SSI data code" gray / binary is relevant for BiSS encoders.

SSI clock frequency ec43 SSI clock freq.

Index	Id-Text	Name	Function
0x282B	ec43	SSI clock freg.	Selection of the SSI transmission clock frequency
0x482B	6043	SSI Clock freq.	Selection of the SSI transmission clock frequency

The following frequencies can be selected:

ec43	SSI clock freq.	0x282B / 0x482B
Value	Clock frequency	
0	100 kHz (156 kHz)	
1	500 kHz	
2	1 MHz (833 kHz)	

The values in brackets apply if Endat is adjusted on the other encoder channel.

Since the position for SinCos-SSI encoders is mainly determined from the 1Vss signals and the SSI position serves only for monitoring (=> see "Absolute encoder", 6.1.2.1, page 209), it is recommended to maintain the clock frequency at 100 kHz.

For SSI encoders, the position is cyclically clocked synchronously to the control grid. Depending on the clock frequency and data word length, reading out can take more time than the control grid length. Then the position value is not longer read out in each control grid cycle, but so many cycles are omitted until the read out is completed.

The SSI telegram length in µs is calculated as:

(ec40 + ec41) / clock frequency [MHz] + 20 μs processing time

One channel active				
Telegram length	Time pattern SSI po-			
	sition			
upto 62 μs	125 µs			
62 187 μs	250 µs			
187 312 μs	375 µs			
312 437 µs	500 μs			
more than 437 µs	625 µs			

Both channels active					
Telegram length	Time pattern SSI position				
	position				
upto 62 μs	250 µs				
62 312 μs	500 µs				
more than 312 µs	750 µs				

The missing position values can have a negative effect on the control characteristics of the drive if an SSI encoder is used as motor feedback. The influence for the position control is lower.

The telegram length can be decreased with higher clock frequency, but the encoder, line lengths, line capacities and running times limit the max. possible clock frequency.

The monoflop time of the encoder (i.e. the pulse off time which must be maintained after reading out of a position value, in order that the encoder determines a new position value) must not be higher than 60 μ s for a switched on channel and not higher than 180 μ s for both switched channels.

With standard SSI encoders it is in the range of 10 to 20 µs.

Allocation of the SSI position to the 1Vss signals ec44 SSI abs. allocation Only for SinCos-SSI encoder:

ec44	SSI abs allocation	0x282C / 0x482C		
Value	Plaintext	Function		
0	0: 0° - 90°	Allocation of the SSI position to the 1Vss signals.		
1	1: 90° - 180°	The angle is adjusted within a signal period where the absolute SSI positi		
2	2: 180° - 270°	is 0.		
3	3: 270° - 360°	The data must be taken from the encoder data sheet.		

At the position where the absolute SSI position is 0, the high resolution (i.e. the position within an incremental signal period) also has a position angle, which can be entered in this parameter.

Without this setting, position deviations of one signal period (4 increments) can occur at higher signal frequencies, which can be toggled by the position correction function.

6.1.6.7 Special Functions

6.1.6.7.1 General settings for encoder evaluation ec14 encoder interf. gen. settings

Index	Id-Text	Name	Function
0x280E	ec14	encoder interf. gen. settings	Adjustment of the encoder supply voltage

Different encoders operate with different supply voltages. These supply voltages are provided at the encoder interface at different contacts:

Pin 8 / 9 supply voltage for 5V encoder

Pin 25 / 26 supply voltage for 8V encoder

Pin 18 supply voltage for 24V encoder

Pin 14 / 15 resolver modulation for encoder channel A

Notes for pin 25 / 26

The supply voltage of DC 8 V is only output if

- a) Parameter ec14 Bit 1 = "manual" and ec14 Bit 0 = "1: 8V" is adjusted.
- b) Parameter ec14 Bit 1 = "automatic" and ec16 = "Hiperface" is adjusted.

All other voltages at these contacts are not defined and may not be used to supply encoders.

The settings affect both encoder channels A and B (at X3A and X3B):

ec14	encoder interf. gen. settings 0x280E			0x280E	
Bit	Function	Value	Plaintext	Function	
0	Supply voltage of the encoder	0 5V		Must be selected if two 5V encoders are connect wise the maximum output current of 250mA per not available. (8V supply voltage at Pin 25 / 26 is ble)	channel is
		1	8V	one 8V encoder is used	
	Adjustment	0	manual	The supply voltage must be set with bit 0.	
1	of the supply voltage	2	auto- matic	When ec16 is set to Hiperface, the supply voltage 26 is automatically set to 8V.	ge at Pin 25 /

Hiperface encoders must always be supplied with 8V.

6.1.6.7.2 Several encoder functions ec36 several encoder functions

Index	Id-Text	Name	Function
0x2824	0026	several encoder functions	Several encoder functions
0x4824	ec36		

After setting a bit, the respective function is triggered and the bit is deleted after this function is terminated.

NOTICE

By the function "set zero pos." also the system offset changes. Therefore subsequently the changed system offset must be absolutely determined for synchronous motors.

ec36	several encod	ler func	tions		0x2824 / 0x4824
Bit	Function	Valu e	Plaintext	Function	
0	Set zero position	1	set zero position	With EnDat and Hiperface encoder tion <i>in the encoder</i> can be set to zero. If the position correction function is = 91 "dig. pos. corr. diff. err" may o zero point because the position of changes. The new position is valid set. For encoders with 1Vpp signals, the set exactly to zero. The lowest bits the position within a signal period, with singleturn encoders, the councilist also deleted after zeroing. With multiturn encoders, the multituencoder are also set to zero. Special features of linear encoder Here, the position is set to 10 mm is manent overflows and underflows of the position value after zero setting. If ec50 is used and if after zero setting lower limit of the position, there is a speed due to the conversion into visit a zero point should be set by we ble to drive over the lower limit.	active, the error ec01 ccur after setting the the encoder suddenly after the error is re- e position cannot be which correspond to are retained. ted revolutions are the error is re- error in the error ec01 error in the error in th
1	Reset error for battery- buffered EnDat multi- turn encod- ers	2	reset error for battery-buff- ered EnDat encoder	If battery-specific errors are to be reset before the error reset. This is to prevent accidental resetti (see also 6.1.9.1, "Battery-specific messages", page 243)	ng.
2	Zero setting of the revo- lution coun- ter in the en- coder	4	clear multi- turn rounds for battery- buffered EnDat en- coder	For encoders with battery buffering tions in the encoder are set to 0. (see also 6.1.9.3 "Zero setting of the in the encoder", page 244)	

6.1.6.7.3 Define system position system offset (SM) ec23

The reference between rotor position and zero position of the attached encoder system is created by the system position.

This system position is preset in the factory setting for standard KEB motors.

In order to operate a "unknown" motor with encoder system, it is necessary to carry out an adjustment in order to detect the system position.

This parameter is described in chapter **6.2.3.5 System** offset.

6.1.6.8 Incremental encoder emulation

An incremental encoder emulation can be activated for channel B if the encoder type for channel B ec16 is set to 16 2TTL output 2.

In this case, a position difference, which occurs at channel A from one control grid cycle to the next, is converted into two rectangular incremental signals which are shifted by 90° and output at channel B during the following control cycle.

The number of signal periods per revolution which shall be output is adjusted in ec29 signal periods per revolution B in encoder parameter group B. The maximum is 16384.

If the position of channel A has the value zero within one revolution, a zero signal is additionally output at channel B.

It is irrelevant which encoder type is evaluated at channel A. Also positions of the resolver are converted into incremental signals.

Signals are only output if the position value on channel A is also valid.

An error is triggered if the maximum possible signal frequency of 500 kHz is exceeded.

6.1.7 Operation of absolute linear encoders

With these encoder types in ec16, linear motors can be operated current and speed-controlled (provided the connected encoder is supported):

EnDat + 1Vpp, EnDat digital, Hiperface, BiSS Linear

With these encoder types, linear encoders can only be evaluated as position feedback:

SSI, TTL zero sig, Sin/Cos abs zero sig,

With these encoder types, linear motors can be operated current and speed-controlled if the system position is measured each time after switching on. Otherwise they can only be evaluated as position feedback:

Linear Sin/Cos with perodic zero sig, Linear Sin/Cos with distance-coded zero sig, Linear TTL with perodic zero sig, Linear TTL with distance-coded zero sig,

All other encoder types in ec16 cannot be used for linear encoders.

As far as possible, the setting and use of linear encoders is kept the same as that of rotary encoders. The few differences are described for the relevant parameters.

This means, for example, zero setting of the position in the encoder with ec36 or saving and reading of motor data with ec46 in the encoder will work in the same way if the encoder supports them.

If the connected linear encoder shall be used only for a higher-level position control or as a position display for a control, the corresponding encoder type must be set in ec16 for EnDat or Hiperface for this purpose. As for rotary encoders, the encoder evaluation reads all required values from the electronic nameplate of the encoder.

For incremental encoders, the increments per revolution or the basic distance must be set in ec29.

For BiSS and SSI, the entire digital resolution must be set in ec40. i.e. ec41 remains 0.

However, if a linear motor shall be operated with current and speed control, special settings are required, which are described below.

The control on the control board does not differentiate between rotary and linear drives.

I.e. a linear motor must be "simulated" in such a way that a suitable rotary drive results for it. For this, parameters ec50 virtual round for linear encoder, dr06 rated frequency and dr04 rated speed are set.

To do this, a piece of a certain length is *mentally* cut out of the linear drive, bent into a circle and the two ends joined together to form a virtual, rotary drive.

The length of this piece must have be an integer number of position information (or sine periods) AND an integer number of motor pole pairs. Otherwise, there would be either a discontinuity (jump) in the position or an asymmetry in the motor structure at the point where the two ends are mentally joined together.

6.1.7.1 dr06 rated frequency and dr04 rated speed

This adapts the motor to the imaginary (virtual) rotatory drive.

6.1.7.2 ec50 virtual round for linear encoder and the difference to ec29

This adapts the **encoder** to the imaginary (virtual) rotary drive.

In parameter ec50, which is only necessary for linear encoders, it is entered how much of the position information from the encoder covers a multiple number of motor pole pairs.

- ec50 determines how long the encoder has passed a virtual revolution. This also defines the value of the position parameters, e.g. ru33 for one revolution or the result of the speed in ru09.

ec50 is dependent on the used motor.

- As before ec29 is iincrements per revolution. Just as for rotary encoders, the number of signal periods between the zero signals (or also reference marks) is set here. In the case of distance-coded reference marks, the base distance is set here. (More about the reference signals, see 6.1.8 "Operation of non-absolute linear encoders (with and without reference marks)", page 242)

ec29 is dependent on the used encoder.

Evaluation with incremental signals (sinusoidal or rectangular)

If the incremental signals of the encoder are evaluated (e.g. for ec16 = "10: EnDat, + 1Vpp" or ec16 = "13: Hiperface"), the number of signal periods covering a whole number of motor pole pairs is entered in ec50.

Evaluation of digital encoders

If the connected measuring system is evaluated digitally (e.g. at ec16 = "11: EnDat digital" or ec16 = "14: BiSS Linear") the value range of the digital position is entered in ec50, which covers a multiple number of motor pole pairs, i.e. by how much the digital position word from the encoder changes when a multiple number of motor pole pairs is passed.

6.1.7.3 Example for evaluation of incremental signals

Assuming the linear motor has a distance from one north pole to the next of 70 mm (length of a motor pole pair) and a signal period is 22.5 mm. This ratio of 70 / 22.5 is converted by way that the numerator and denominator become the smallest possible integer values, i.e. in this case: 28 / 9.

The reciprocal of this ratio is 9/28. If you multiply the reciprocal by the ratio, you have the distance where the integer number of motor pole pairs matches to a integer number of sine periods.

 $70mm / 22.5mm \times 9 / 28 = 630mm / 630mm$.

Thus this virtual rotary drive, divided over its 630 mm circumference, has 9 integer motor pole pairs and 28 integer signal periods.

These 28 signal periods are set in ec50.

Next, the linear rated speed is converted into the rotatory nominal frequency. The rated frequency is the number of motor pole pairs that are passed per second at rated speed.

Rated frequency = rated speed / length of a motor pole pair.

For an assumed rated speed of 4.5 m/s, the following results:

Rated frequency = 4.5 m/s / (70 mm / 1000) = 4.5 m/s / 0.07 m = 64.286 Hz.

For convenience only, 65 Hz is chosen.

At last the number of motor pole pairs is set to 9 with the rated speed, i.e.:

Rated speed = rated frequency / motor pole pairs = 65 Hz / 9 * 60 = 433.333 rpm

To get integer values for rated speed and frequency, both values are multiplied by 3, which results a total of:

rated speed dr04 = 433.33 rpm * 3 = 1300 rpm

rated frequency dr06 = 65 Hz * 3 = 195 Hz

6.1.7.4 Example for evaluation of purely digital linear encoders

With digital encoders, instead of the length of one sine period, the resolution of the digital position (also called measuring step) must be used, i.e. how far the measuring value must be turned that the position increases by 1.

The length of the motor pole pair from the previous example is 70 mm and the measuring step is 20 μ m. l.e. if a whole motor pole pair is passed through, the position changes by the value 70 mm / 0.02 mm = 3500.

3500 is entered in parameter ec50.

Since the ratio 70 mm / 0.02 mm is already an integer, this already results in a minimum possible number of pole pairs of 1.

6.1.8 Operation of non-absolute linear encoders (with and without reference marks))

In principle, the evaluation of non-absolute linear encoders with incremental signals is largely the same as that of non-absolute rotary encoders. The main difference is the calculation of the position of the zero signal in ec31.

Devices with sinusoidal 1Vpp and square-wave incremental signals are also evaluated in the same way.

The detection of the encoder type and the calculation of the position of the zero signal of the first procedure is the same as for rotary incremental encoders with reference marks/zero signals. The values for the detected encoder type in ec17 and the possible error messages in ec01 are correspondingly the same.

6.1.8.1 With periodic reference marks

Here the linear encoder has several reference marks with the same distance to each other. How many periods of the incremental signals are between the reference marks is set in ec29 "signal periods per revolution".

A special case of this is when there is only one reference mark on the travel path. Then min. one higher value of signal periods is set in ec29 than half of the signal periods which are on the distance.

Example:

A linear encoder is 540 mm long and a signal period is 20 μ m. Then there are 540 mm / 0.02 mm = 27000 periods over the entire travel path, i.e. at least 13500 must be set in ec29.

As long as a second zero signal is not passed or only the same one is passed, the detected encoder type ec17 remains at 1 "encoder identification running", i.e. even if there is only one zero signal on the travel path. Apart from this display, this has no further effects. All monitorings are already running.

If no zero signal has passed by three revolutions (3 x ec29) after switching on, error ec01 = 113 "Sin/Cos: no reference detected", or 125 "TTL: no reference mark detected" is triggered.

6.1.8.2 With distance-coded reference marks

For distance-coded reference marks, the reference mark track consists of many reference marks that all have a different distance from each other. From these distances, the absolute reference can be calculated if two adjacent reference marks have been passed.

This absolute reference is also calculated here and is displayed as position of the zero signal in ec31.

6.1.9 Operation of EnDat multiturn encoders with battery buffering

For some designs, such as larger hollow shaft encoders or scale rings with scanning heads, no gearbox can be installed. The multiturn function is then implemented here with a buffer battery which is connected to the encoder. This only supplies the part in the encoder that is responsible for counting the revolutions, even if the "normal" main voltage supply to the encoder is switched off.

As long as either the battery voltage or the main voltage supply is above its maximum value, the counted revolutions are reliable.

If the voltage of the buffer battery (rated voltage 3.6V) is below certain threshold values, the encoder reports warning and/or error messages.

The multiturn range is dependent on the encoder and min. 65536 revolutions, whereby the encoder evaluation can only process max. 65536 revolutions from the encoder.

Only the software-related functions that result from the EnDat protocol for the operation of these encoders are described here. All hardware-related information (e.g. battery types, connection, etc.) can be found in the Heidenhain documentation.

6.1.9.1 Battery-specific error and warning messages

The errors for battery-buffered encoders are fundamentally important for the function of the encoder and the reliability of the position value. Therefore, for resetting, e.g. with co00 = 128, bit 1 "reset error for battery-buffered EnDat encoder" in ec36 several encoder functions must be set beforehand.

This is to prevent these messages from being accidentally reset and thus overlooked by an automated error reset (e.g. after each switch-on).

The following battery-specific error and warning messages are described in the respective chapters for error and warning messages, in detail:

- Error message of the encoder evaluation: ec01 = 62 "EnDat: encoder send battery warning"
- Warning from the encoder: ec19, Bit 3: "Battery charge"
- different alarm bits and operating status error sources from the encoder in ec18.

6.1.9.2 Changing the buffer battery

When changing the buffer battery, the encoder must be connected to the main power supply. Otherwise, the counted revolutions are lost, which is displayed with the operating status error source "M Voltage interruption" in ec18.

The battery charge warning can be cleared by switching the encoder type ec16 off and on again.

6.1.9.3 Zero setting of the revolution counter in the encoder

With bit 2 "clear multiturn rounds for battery-buffered EnDat encoder" of ec36, the revolution counter in the encoder can be set to zero, i.e. subsequently the counted revolutions are 0. By way the revolutions can be set to a defined value if they are no longer reliable.

The revolutions can only be deleted if there are no encoder errors for battery-buffered encoders.

Only the revolutions are set to 0 with bit 2, i.e. if the entire position shall be set to 0, then bit 0 "set zero position" of ec36 must be set.

6.1.10 Error and warning messages

6.1.10.1 Error messages of the encoder interface

Index	Id-Text	Name	Function
0x2801 0x4801	ec01	error encoder interface	Error message of the encoder interface

ec01	error encoder interface			
Value	Name	Note		
general errors				
0	no error			
6	fast comm: overrun err			
7	fast comm: sync err	Internal communication between control and encoder card.		
8	fast comm: BCC err	internal communication between control and encoder card.		
9	fast comm: inv. data			
25	enc. supply during init	Error during switching on the power supply, e.g. the voltage is too low.		
29	wrong enc type combination	The adjusted encoder types for channel A and B can not be evaluated together.		
41	SACB comm: overrun err			
42	SACB comm: frame err	Internal communication between control and encoder card.		
43	SACB comm: parity err			
47	SACB comm: BCC err			
		Endat encoder		
51	Endat: no comm.	Communication to the encoder could not be established already during the initialization.		
52	EnDat: 1Vpp missing	Already during the initialization no 1Vss signals could be detected. But Endat with 1Vss is adjusted as encoder type.		
55	EnDat: unsupported type	Unknown ID, encoder is not supported.		
57	EnDat: unsupp. version	Endat version is not supported.		

ec01	error encoder interface			
Value	Name Note			
		If the battery is disconnected and the device is switched off and on again, the encoder only sends a warning in ec19, bit 3. However, the position may be wrong, i.e. the revolutions are set to another value. In order to prevent starting with the wrong position, this error is		
62	EnDat: encoder send battery warning	triggered when the encoder sends a battery warning during initialisation.		
		If the battery voltage falls below the limit value during operation (i.e. with the main voltage switched on), the encoder only sends a warning, which is also displayed as warning by the encoder. The whole revolutions are retained, i.e. the position value is correct.		
68	EnDat: write data error	Data could not be stored in the encoder.		
74	EnDat: timeout at reading additional information	While reading the additional information, the communication is interrupted, e.g. due to a break of the core in the encoder cable.		
81 82	EnDat: error bit 1 EnDat: error bit 2	Encoder has sent error message		
83	EnDat: CRC error position			
84	EnDat: CRC error add.info 1			
85	EnDat: CRC error add.info 2			
86	EnDat: encoder error type 1	Error in Endat communication during operation. But it was al-		
87	EnDat: watchdog error	ready ok.		
88	EnDat: communication not started			
89	EnDat: comm. not finished			
Position correction function				
91	position difference too high	Position difference between incremental and absolute (digital) position too large.		
92	difference in rounds occured	Difference between counted revolutions and revolutions of the (multiturn) encoder has occurred.		
06	Sin/Cos: position difference	Error position correction incremental with absolute position at		
96	to absolute position too high	SinCos encoders.		
		nitoring of the 1Vss signals		
101	1Vpp incremental signals: signal error	Error 1Vss incremental signals		
103	1Vpp absolute signals: signal error	Error 1Vss absolute signals at SinCos encoder		
	S	ine-cosine-SSI encoder		
105	Sin/Cos+SSI: no signals detected in init	Already during the initialization, not all encoder signals have been recognized (recognized encoder types are displayed in ec17).		
		Sine-cosine encoder		
113	Sin/Cos: no reference mark detected	Reference signal not recognized (inc per revolution could be wrong too).		
114	Sin/Cos: adjusted signal periods too small	Adjusted inc per revolution too small (compared with distance between two reference signals).		
115	Sin/Cos: adjusted signal periods too high	Adjusted inc per revolution too high (compared with distance between two reference signals).		
116	Sin/Cos: init err	Already during the initialization, not all encoder signals have been recognized (=> recognized encoder type).		
117	Sin/Cos: reference signal not recognised anymore	Reference signal is not recognized since some revolutions, but it was already valid.		
	,	TTL-/HTL encoder		

ec01	error encoder interface	
Value	Name	Note
121	TTL: track A/Cos error	Trace A defective or missing
122	TTL: track B/Sin error	Trace B defective or missing
123	TTL: track A or B error Trace A and B defective or missing	
125	no reference mark detected	Reference signal not recognized (inc per revolution could be wrong too).
126	TTL: adjusted signal periods too small	Adjusted inc per revolution too small (compared with distance between two reference signals).
127	TTL: adjusted signal periods too high	Adjusted inc per revolution too high (compared with distance between two reference signals).
128	TTL: init err	Already during the initialization, not all encoder signals have been recognized (=> recognized encoder type).
129	TTL: reference signal not recognised anymore	Reference signal is not recognized since some revolutions, but it was already valid.
		BiSS encoder
131	BISS: comm init err	No encoder connected, because the signal level at the data in-
132	BISS: enc init err	put is invalid or the encoder does not react.
133	BISS: unsupp. protocol	Communication is possible, but the detected protocol is not supported. An unknown BiSS-B encoder is connected.
134	BISS: enc comm init err	Encoder is connected but the communication could not be established without errors during initialization. The settings in ec40, ec41, ec42 are wrong. If ec17 = 0: "no encoder detected" and ec02 = 20: "BISS: encoder communication": A BiSS-C unidirectional (without el. nameplate) has been detected. If ec17 = 84: "BiSS Mode C, EDS containing in-consistent data" and ec02 = 31: "BISS Mode C: EDS data invalid": A BiSS-C-encoder with el. nameplate has been detected, but it could not be initialized with it. Then an attempt was made to initialize the encoder as BiSS-C unidirectional encoder, which also failed.
137	BISS: unsupp. enc ID	Encoder type not supported
138	BISS: read para timeout	Enough type not supported
139	BISS: read pos. timeout	
140	BISS: enc comm err	
141	BISS: comm watchdog err	
142	BISS comm: pos. CRC err	
143	BISS comm: para CRC err	Communication to the encoder
144	BISS: pos. read err	
145	BISS: pos. invalid	
146	BISS: enc err bit	
147	BISS: CPU watchdog err	
177	2.00. C. S waterlady cri	Resolver
151	Resolver: signal err	One or both signals are invalid.
101		Hiperface
161	Hiperface: enc init err	Already during the initialization, not all encoder signals have been recognized (=> recognized encoder type).
10.5	Hiperface: name plate access err	Error in case of access to the extended nameplate 0xFF in the encoder.
	Hiperface: enc memory read err	No data can be read from the encoder during initialization.
	Hiperface: enc comm BCC err	Communication to the encoder
100	pondoo. one commi boo on	Communication to the officer

ec01	error encoder interface			
Value	Name	Note		
171	Hiperface: enc comm parity err			
172	Hiperface: enc comm overrun err			
173	Hiperface: enc comm over- run/parity err			
174	Hiperface: enc comm frame err			
175	Hiperface: enc comm frame/parity err			
176	Hiperface: enc comm frame/overrun err			
177	Hiperface: enc comm frm/ov- rrn/prty err	Communication to the encoder		
178	Hiperface: enc comm trm time out			
179	Hiperface: enc comm time out			
180	Hiperface: enc comm red time out			
181	Hiperface: enc reset error	Encoder can not be reset.		
SSI and sine-cosine-SSI encoder				
191	SSI: no trace detected in init	SSI communication could not be established during initialization, e.g. no edges or invalid signal levels at the data inputs.		
192	SSI: data line signal level error	Error SSI communication, e.g. no edges or invalid signal levels at the data inputs.		
193	SSI: no reaction or position from encoder	Error SSI communication: No reaction or no position value from encoder. Can also occur if the adjusted data word length is less than the actual one of the encoder.		
194	SSI: parity error	Parity bit is wrong, if parity check is activated.		
195	SSI: error bit sent by encoder	Encoder has sent error bit		
	Incre	emental encoder emulation		
202	TTL output: frequency too high	Maximum frequency of the output signals is exceeded (500 kHz).		

6.1.10.2 Warning messages of the encoder interface

Index	Id-Text	Name	Function
0x2802 0x4802	ec02	warning encoder interf.	Warning message of the encoder interface

ec02	warning encoder interface	
Value	Name	Note
0	no warning	No warning
1	fast communication	Process data communication
2	SACB communication	SACB communication
3	EEPROM access not possible	EEPROM reading and writing not possible
4	EEPROM write access not possible	EEPROM writing not possible, reading ok
5	EEPROM read: error corrected	Found error during reading the EEPROM and corrected.
6	enc supply out of specification	Encoder supply voltage temporary out of specification during switching on
10	EnDat: communication	Endat communication
11	EnDat: comm add. info	Endat communication (embedded additional communication)
12	pos diff occurred	Position deviation occurred
13	pos diff corrected	Position deviation occurred and corrected
14	1Vpp incremental signals: signal error	1Vpp incremental signals invalid
15	1Vpp absolute signals: signal error	1Vpp absolute signals invalid
16	TTL: track A/Cos error	TTL track A invalid
17	TTL: track B/Sin error	TTL track B invalid
18	position difference too high	Position deviation to 1Vpp absolute track occurred.
19	position difference corrected	Position deviation to 1Vpp absolute track corrected.
20	BISS: encoder communication	BiSS communication
21	encoder error	Encoder has sent error message, but error tripping is deactivated
22	SSI communication error	SSI communication error
23	BISS Mode C: enc mem access	BiSS Mode C: encoder memory access
24	encoder data reading error	Data reading from encoder incorrect
25	encoder data writing error	Data writing in encoder incorrect
26	internal encoder EEPROM error	Encoder has detected internal EEPROM error
27	no reference signal detected by encoder	Reference signal not detected by the encoder
28	Hiperface: communication	Hiperface communication
29	Invalid data in encoder memory	Memory in encoder contains no usable data
30	TTL output: sync warning	Encoder emulation: Not all signals could be output at the last cycle and will be output in the next cycle.
32	EnDat: incremental track has reached the functional limit	
33	EnDat: absolute track has reached the functional limit	This part of the encoder has reached its functional limit and should be replaced.
34	EnDat: pos. calculation has reached the functional limit	
35	enc. sync. comm. is longer than sync cycle	Communication to the encoder is too long and cannot be completed in the control grid. This encoder cannot be safely evaluated because no current position can be calculated in the faulty cycles.

6.1.10.3 Error messages from the encoder

Index	Id-Text	Name	Function
0x2812 0x4812	ec18	error encoder	Error message from the encoder

Warnings and errors from the encoder are determined by the encoder itself and then actively sent by the encoder. The encoder evaluation only transmits the error messages and displays them directly. Consequently, the values are depending on the used encoder and the meaning can be taken from the corresponding data sheets.

The following are examples of some error messages of common, supported encoder types

	coder types			
ec18	error encoder			
Value/Bit	Error encoder			
0	No error			
EnDat: 16 bit value "Alarms" to address 0 in memory area "Operating condition" of the encoder				
Bit0	Lighting failed			
Bit1	Signal amplitude invalid			
Bit 2	Position value invalid			
Bit3	Overvoltage			
Bit4	Undervoltage			
Bit5	Overcurrent			
Bit6	Battery change required (if available)			
Bit 7-15	Not yet defined			
	EnDat: 16-bit value "Operating state error sources"			
Bit 16	Lighting (EQUAL)			
Bit 17	Signal amplitude (EQUAL)			
Bit 18	S Position 1 (POS)			
Bit 19	Overvoltage (EQUAL)			
Bit 20	Undervoltage (EQUAL)			
Bit 21	Overcurrent (EQUAL)			
Bit 22	Overtemperature (EQUAL)			
Bit 23	S Position 2 (POS)			
	S System (POS), (BATT)			
D:4 O 4	Error in singleturn calculation during initialisation.			
Bit 24	If the error still occurs after switching off and on again, there is a hardware problem with the			
	encoder.			
Bit 25	S Voltage interruption (BATT)			
	M Position 1 (POS), (BATT)			
	Error in multiturn calculation or sampling.			
Bit 26	The encoder must be referenced again if it cannot be ensured that the whole revolutions are			
	still correct.			
Bit 27	M Position 2 (POS)			
Dit 21	M System (POS), (BATT)			
	Error in multiturn calculation during initialisation.			
Bit 28	If the error still occurs after switching off and on again, there is a hardware problem with the encoder.			
	The encoder must be referenced again if it cannot be ensured that the whole revolutions are			
	still correct.			
	Suii correct.			

ec18	error encoder		
Value/Bit	Error encoder		
1 41 0.07 2.10	M Voltage interruption (POS), (BATT)		
	The battery voltage <u>and</u> the main supply voltage have been fallen below the limit values. As long as this error is active, no revolutions are counted.		
Bit 29	The battery must be replaced and the encoder must be referenced if it cannot be ensured that the whole revolutions are still correct.		
	The possibly accompanying error sources M Position 1, M System and Overflow/Underflow are to be ignored.		
	Overflow / Underflow (POS), (BATT)		
Bit 30	The specified multiturn counting range is exceeded. The error can only be reset when the encoder has been moved back into the specified counting range.		
	This error source is only supported by special encoder versions, which do not support reset-		
	ting the multiturn counter.		
Bit 31	M battery (BATT)		
BiSS Hengstler Acuro : Error register to address 0x68			
Bit0	LED current outside specification		
Bit1	Multiturn error		
Bit 2	Position error		
Bit7	Temperature outside specification		
	Hiperface: Values encoder status		
1	Analog signals outside specification		
2-6	Initialization of the encoder		
9-13	Communication disturbed		
15-18	Access to encoder memory		
28	Analog signals invalid		
29	LED current outside specification		
30	Critical encoder temperature		
31	Speed too high		
32-35	Position invalid		
	SSI:		
1	Power Fail Bit is active		

For EnDat operating state error sources

S = Singleturn, M = Multiturn

(EQUAL) = Operating state error source is equal to the alarm bit in the lower 16 bits of ec18

(POS) = Operating state error source is an extension of the alarm bit "Position value faulty" (bit 2) and is the same in description and remedy

(BATT) = for battery-buffered measuring devices

Special features of the EnDat error messages

The EnDat interface differentiates between alarms and so-called "operating state error sources"

When the encoder detects an internal error, it sends an alarm bit, which is indicated in the lower 16 bits of ec18.

The so-called "operating state error sources" allow further information on these alarm bits. If the encoder also supports operating state error sources, these are now read out and displayed in the upper 16 bits of ec18.

Some error sources are the same as the alarm bits in the lower 16 bits of ec18, i.e. they are set simultaneously and also mean the same.

^{1 =} position value 1, 2 = position value 2

Some error sources belong to the alarm bit "position value faulty" (bit 2), i.e. they are an extension of this alarm bit and provide a more precise error cause.

Some error sources belong to battery-buffered devices and sometimes require a certain action from the user so that the position value remains reliable.

(see also 6.1.9 "Operation of EnDat multiturn encoders with battery buffering", page 243)

6.1.10.4 Encoder warning messages

Index	Id-Text	Name	Function
0x2813 0x4813	ec19	warning encoder	Encoder warning message

Some encoders send warning messages, which are only displayed by the encoder evaluation (just the same as error messages). The position value is (still) reliable for warnings. The following are examples of some error messages of common, supported encoder types

ec19	warning encoder				
Value/Bit	Error encoder				
0	No warning				
Endat: 16 bit value "warnings" to address 1 in memory area "operating condition" of the encoder					
Bit0	Frequency collision				
Bit1	Temperature exceeding				
Bit 2	Control reserve LED reached				
Bit3	Battery charge too low No battery is connected or the battery voltage has dropped below the limit value (e.g. 2.8V +/- 0.2V, see encoder data sheet) while the encoder is being supplied with the main voltage. As long as the encoder is supplied by the main voltage, the encoder remains fully functional and the position value remains reliable. After changing or connecting the buffer battery, the warning can be reset by switching the encoder type in ec16 off and on again.				
Bit4	Reference point reached				
Bit 5-15	Not yet defined				
BiSS Hengstler Acuro : Error bit in position data word					
1	OptoAsic temperature exceeded or fall below				

6.1.11 Store data in the encoder

Motor data can be read from an encoder with electronic type plate or written into the encoder.

The values are stored in the encoder which were previously taken over with dr99 motordata control.

Index	Id-Text	Name	Function
0x282E	ec46	encoder read/write	Write or read data to the encoder.
0x282F	ec47	status encoder r/w	State of the function of ec46.

ec46 and ec47 are only supported on encoder interface channel A.

ec46	encoder read/write					
Bit	Function	Value	Plaintext	Function		
0	read data	0	off			
		1	enable	Motor data are transferred from the encoder to the inverter.		
1	store	0	off			
	data	2	enable	Motor data are stored in the encoder.		

ec47	status encoder r/w		
Value	Name	Note	
0	idle	no communication	
1	busy	Data are written to the encoder or read by the encoder.	
2	data invalid	The read data are not conform with a valid format for KEB. No data will be transferred.	
3	basic data loaded	Data from the KEB-F5 Definition are found and transferred in the encoder.	
4	enhanced data loaded	d data Data for the enhanced format for H6 are found and transferred in the encoder.	
5	data stored		
6	comm error	No communication to the encoder possible. (No encoder connected or interface not activated with ec16).	

6.1.11.1 Format for the data in the encoder

The data in the following table are stored in the encoder depending on the motor type. There are 2 different formats supported: "basic" = F5 format and "enhanced" = for device generation 6 extended format

The extended (enhanced) format is always used when writing the data to the encoder. This is defined by way that the data of the F5 format (basic) remain accessible. An encoder written in the "enhanced" format can be read out with F5 devices.

NOTICE

➤ The rated motor voltage (dr05 rated voltage) is **not** stored in the encoder for synchronous motors. If the value is unequal to the default value of the converter, dr05 must also be written, since the limiting characteristic of the synchronous motor is also dependent on the rated motor voltage of dr13 breakdown torque and dr25 breakdown speed.

ld Tout	Name		DSM	DASM		
Id-Text	Name	basic	enhanced	basic	enhanced	
dr00	motor type	X	Х	Х	Х	
dr01	motor part number		Х		Х	
dr03	rated current	X	X	Х	X	
dr04	rated speed	Х	Х	х	Х	
dr05	rated voltage			х	Х	
dr06	rated frequency	Х	Х	х	Х	
dr09	rated torque	Х	Х	Х	Х	
dr11	max torque %	Х	Х		Х	
dr12	max current %	Х	Х		Х	
dr13	breakdown torque %		Х		Х	
dr14	SM EMF [Vpk/1000min.1]	Х	Х			
dr15	SM inductance q-axis UV	Х	Х			
dr16	SM inductance d-axis %	x(1)	Х			
dr17	stator resistance UV	X	Х	х	Х	
dr18	ASM rotor resistance UV %			х	Х	
dr19	ASM head inductance UV			х	Х	
dr21	ASM sigma stator inductance UV			х	Х	
dr22	ASM sigma rotor inductance %			Х	Х	
dr25	breakdown speed %		Х		Х	
dr28	Uic reference voltage		Х		Х	
dr32	inertia motor [kg*cm^2]		Х		Х	
dr33	motor temp sensor type		Х		Х	
dr34	motorprotection current %		Х		Х	
dr35	SM prot. time. Min. Is/Id		Х			
dr36	SM prot. time Imax		Х			
dr37	SM prot. recovery time		Х			
dr38	SM prot. min. ls/ld		Х			
dr39	ASM prot. Mode				Х	
		<u>.</u>				
ec23	system offset	Х	Х			
ec26	speed scan time	Х	Х	Х	Х	
ec27	speed PT1 time	x(1)	x(1)	x(1)	x(1)	
				T.		
cs12	absolute torque	Х	Х	Х	Х	

(1) This value is not directly stored, but calculated from other objects.

The extended (enhanced) format is always used when writing the data to the encoder. This is defined by way that the data of the F5 format (basic) remain accessible. An encoder written in the "enhanced" format can be read out with F5 devices.

6.1.12 Encoder serial number

Index	Id-Text	Name	Function
0x2830	ec48	saved encoder serial number	Saved encoder serial number
0x2831	ec49	encoder serial number	Serial number read out by the encoder

The encoder serial number is read out from the encoder with each power-on reset and each change of the encoder type. ec49 is deleted for encoders without serial number.

Since the serial number for different encoder types is defined differently, the read value is converted in an ASCII string and is displayed byte-by-byte for display standardization.

Example 1: BiSS encoder Hengstler Acuro AC58 / serial number = 255229

ec49	Encode	Encoder serial number										
Subindex	1	2	3	4	5	6	7	8	9	10	11	12
ASCII	0x30	0x30	0x32	0x35	0x35	0x32	0x32	0x39	0x00	0x00	0x00	0x00
Character	0	0	2	5	5	2	2	9		not u	sed	

Example 2: Hiperface encoder SKM 36 / serial number = GB0450179

ec49	Encode	Encoder serial number										
Subindex	1	2	3	4	5	6	7	8	9	10	11	12
ASCII	0x47	0x42	0x30	0x34	0x35	0x30	0x31	0x37	0x39	0x00	0x00	0x00
Character	G	В	0	4	5	0	1	7	9	not use	ed	

6.1.12.1 Save the encoder serial number

By writing on ec49 the read serial number from the encoder is copied to ec48 and is stored non-volatile.

6.1.12.2 Testing on exchange of the encoder

By means of the encoder serial number it can be checked whether the encoder has been replaced.

If pn73 E.enc A changed stop mode is activated for encoder A or pn74 E.enc B changed stop mode for encoder B, the adjusted response is triggered, as soon as ec48 und ec49 are different.

6.1.13 Assignment of the encoder channels

Index	Id-Text	Name	Function
0x2504	co04	position source	0 : channel A 1 : channel B 2 : estimated position
0x2505	co05	speed control source	0 : channel A 1 : channel B

If a control mode with encoder is selected in cs00 control mode, the source for the speed can be selected with this parameter. Channel A is always used as default setting for speed control.

The source for a position control can be selected with co04 position source.

6.2 Motor parameterization

6.2.1 General

An assistent for start-up-support is integrated in Combivis 6.

Each parameter input in the dr group is only stored if parameter dr99 "motordata control" is written.

dr99	motordata	control			
Bit	Function	Value	Plaintext	Function	
		0	store motor- data, init reg.	The new motor data are transferred and initialization of all standardizations	
		The new motor data are transferred, but the foing parameters are not recalculated: current controller (ds00ds03) / flux controller (fc18, fc19) / filter time for the stabilization (ds33)			
01	motor- data control	2	store motor- data, calc e.c.d. (ASM)	The equivalent circuit data for the asynchronous machine (ASM) are determined from the nameplate data. dr99 is set to ZERO after calculation. The following parameters are calculated: ⇒ Main inductance (Lh) ⇒ Stator leakage inductance (sLs) ⇒ Rotor leakage inductance (sLr) ⇒ Stator resistance (Rs) ⇒ Rotor resistance (Rr) ⇒ Boost (Uboost)	

If a parameter is changed manually, which is only calculated automatically at motordata control = 0 (e.g., current controller gain), dr99 is set automatically to value 1.

The status can be read in parameter dr02 motordata state.

Modulation release is not possible in status "fill motordata" and "storing motordata". If the drive is set to state "operation enabled" nevertheless, it changes to "ERROR motordata not stored" (ru01 = 21).

This error can only be reset when the data are transferred with dr99. dr-parameters can be changed and activated by writing on dr99 while the drive is in state "operation enabled".

dr02	motordata	motordata state					
Bit	Function	Value	Plaintext	Function			
	motor- 0-1 data state	0	fill motor- data	New data are written, but not transferred yet			
		1	storing motordata	Initialization of standardizations			
0-1		data 2		motordata stored	The data are transferred for the control, but the storage in the EEPROM is not completed yet		
					Error occurred in standardization routine:		
		3 err		 Control parameters could not be calculated (motor / inverter size not suitable, motor data not associated) 			
				Rated switching frequency too low			

It can be selected between asynchronous and synchronous motor via dr00 motor type.

dr00	motor type	
Value	Name	Note
0	asynchron. motor (ASM)	an asynchronous motor should be parameterized
1	synchronous motor (SM)	an asynchronous motor should be parameterized
4	synchronous reluctance motor (SynRM)	The start-up of this motor type is currently only possible in cooperation with KEB. Information can be obtained from the sales representative responsible for you.

The equivalent circuit data (resistance, inductance) must be preset as phase-phase values.

If only phase values are specified in the data sheet these values must be converted in phase-phase values (depending on the circuit mode) for inverter parameters.

Switching type	Inverter value
Star (Y)	Phase value * 2
Delta (Δ)	Phase value * 2/3

The dr parameters differ in nameplate data, equivalent circuit data (determined of data sheet or auto-ID) and application-specific data.

6.2.2 Asynchronous motor

6.2.2.1 Nameplate data

Index	Id-Text	Name	Function
0x2203	dr03	rated current	rated current
0x2204	dr04	rated speed	rated speed
0x2205	dr05	rated voltage	Rated voltage
0x2206	dr06	rated frequency	Rated frequency
0x2207	dr07	ASM rated cos(phi)	cos phi
0x2209	dr09	rated torque	Rated torque (calculated from nameplate data)
0x2220	dr32	inertia motor (kg*cm^2)	Mass moment of inertia of the motor

For an asynchronous motor typically not the rated torque but the rated power is specified.

The rated torque can be determined from the power and rated speed according to the following formula:

dr09 rated torque =
$$\frac{\text{rated power [kW]} * 9550}{\text{rated power } \left[\frac{\text{U}}{\text{min}}\right]}$$

Formula 2: Calculation rated torque

If the motor inertia can be taken from the data sheet, this value should be entered in dr32.

If the motor inertia is unknown, cs17 can be set to 0 and instead the total inertia of the motor plus all rigidly coupled inertia can be entered in parameter dr32 (=> also 6.3.6 Determination of the mass moment of inertia).

NOTICE

➤ If cs99 optimisation factor is not set to 19 "off", the total inertia torque shall not be 0, otherwise the error drive data is triggered when operating dr99.

Index	Id-Text	Name	Function
0x2211	dr17	stator resistance UV	Stator resistance Rs in Ohm
0x2212	dr18	ASM rotor resist. UV %	Rotor resistance Rr in % of the stator resistance
0x2213	dr19	ASM head inductance UV	Head inductance Lh in mH
0x2215	dr21	ASM sigma stator ind. UV	Stator leakage inductance in mH
0x2216	dr22	ASM sigma rotor ind. %	Rotor leakage inductance in % of the stator leakage
0x222C	dr44	speed (Lh/EMK ident.) %	Speed when main inductance is identified (automatically preset) in% of rated speed
0x2236	dr54	ident	Starts the identification
0x2237	dr55	ident state	Displays current measurement or status message (e.g. "stator resistance" "ready" or "error")

6.2.2.2 Equivalent circuit data

Parameters dr17, dr18, dr19, dr21 and dr22 can be taken from a data sheet or automatically determined by the identification.

Especially the main inductance should be always identified, since it is dependent on the magnetising current and the data sheet value is possibly valid for another current. For identification of main inductance the motor must be able to turn freely without load.

The speed for identification is determined by dr44. This value must be changed only if the application (e.g.) requires a lower speed limit.

During the identification steps at standstill the motor may be moved slightly by the test signals.

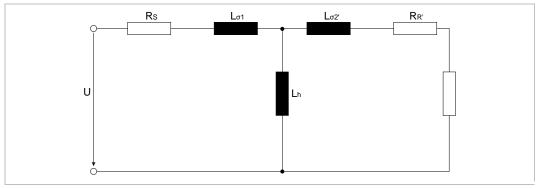


Figure 65: Equivalent circuit diagram motor

6.2.2.3 Application-specific data

Index	Id-Text	Name	Function
0x2208	dr08	magnetising current %	Magnetising current in % of the rated motor current
0x220B	dr11	max. torque %	Max. torque in % rated torque
0x220C	dr12	max. current %	Max. current in % rated motor current
0x220D	dr13	breakdown torque %	Maximum torque at start of field weakening
0x2219	dr25	breakdown speed %	Field weakening speed in % of the rated field weakening
0,2219	uizo	breakdown speed 70	speed
0x221C	dr28	Uic reference voltage	DC reference voltage in V
0x222D	dr45	ASM u/f boost	Boost

The magnetising current can be preset manually in order to reduce motor losses (=> Chapter 6.2.5 Magnetizing current)

dr08	magnetising current %		0x2208
Value	Name	Name Note	
0	off automatic calculation of the magnetising current from cos phi		phi
0.1100%	Manual setting of a magnetising current		

In order to protect the mechanism against excessive torques, the torque can be limited with dr11.

dr11	max torque % 0x220E	
Value	Note	
06000 %	Maximum permissible torque in% of rated torque	

If a motor is energized with multiple of the maximum permissible value, it can not be protected against destruction either by the motor protection function nor by the temperature sensors. Therefore the maximum current can be limited.

dr12	max current %	0x220C	
Value	Note		
06000 %	Maximum permissible motor current in% of the rated motor current		

The application point of the field weakening operation and the limiting characteristic of the motor is defined with dr13 and dr25 (=> Chapter 6.2.9 Field weakening).

The default values are generally sufficient for an initial start-up.

dr13	breakdown torque %	0x220D	
Value	Note		
06000.0 %	Maximum torque at start of field weakening		

dr25	breakdown speed %	0x2219	
Value	Note		
0.11000.0 %	Speed for using the field weakening in % of the rated field weakening speed (rated value calculated from rated motor voltage, DC link voltage and rated frequency)		

The DC link voltage is defined with dr28, designed for the limiting characteristic and the field-weakening range.

The expected DC link voltage, which is dependent on the mains voltage ($\sqrt{2}$ * U_{mains}) or the AFE voltage should be entered in this object (see Chapter 6.2.9 Field weakening).

dr28	uic reference voltage 0x221C		
Value	Note		
200830V	DC reference voltage in V		

6.2.2.4 Motor protection

Index	Id-Text	Name	Function
0x2221	dr33	motor temp sensor type	0 = KTY 84-130, 1 = PTC, 2 = via encoder, 3 = KTY 83 110, 4 = PT1000
0x2222	dr34	motorprotection curr. %	Rated current for software motor protection funktion in % rated motor current
0x2227	dr39	ASM prot. mode	Cooling type (self or separately cooled)

The overtemperature motor protection is parameterized with this objects (=> Chapter 4.4.5 Overtemperature motor (dOH) and chapter 4.4.6 Motor protection switch OH2).

6.2.2.5 Quick start-up of an asynchronous motor

The start-up should always be done with co01 modes of operation = 2 "velocity mode", also if another operating mode shall be used later.

Drive must not be in operation

co00 (CiA 0x6040) controlword = 0 or hardware modulation lock

Load default data

Default data are automatically loaded in all parameters with co08 = 2 and then co09 = 1.

Select operating mode

The operating mode is selected in cs00 bit 0...3 (0 = v/f characteristic operation / 1 = with encoder, without model / 2 = with encoder, with model /3 = without encoder, with model = ASCL)

Preset motor data

With the input of the first motor data the state of dr02 changes to 0 "fill motordata". Only the following data are required for v/f characteristic operation:

dr00 motor type: 0 "asynchronous motor"

dr03 rated current: rated motor current

(for the electronic motor protection func-

tion)

dr04 rated speed / dr06 rated fre-

quency:

Pole-pair number

dr04 rated speed / dr05 rated voltage: Rated point

(voltage for rated speed)

dr45 ASM v/f boost: Voltage for frequency = 0Hz

dr33 motor temp sensor type: Selection motor sensor (PTC or KTY)

If no motor temperature sensor is availa-

ble.

the monitoring must be deactivated with

pn12 = 7.

The following data are **additionally** required for closed-loop operation with or without encoder:

dr09 rated torque torque reference value

dr32 inertia motor (kg*cm^2) for automatic parameterization of the

speed controller (together with cs17 inertia

load).

dr07 rated cos(Phi) Determination of the magnetizing current

(if it is not known, the default value of dr07

can be used).

Adjust equivalent circuit data dr17, dr18, dr19, dr21

There are 2 possibilities:

The equivalent circuit data are taken from one data sheet. Additionally the main inductance should be determined by identification, because the data sheet value is usually suitable only for a specific magnetizing current (dr54 = 8).

The equivalent circuit data are automatically determined completely through identification by the drive (dr54 = 1).

Values within the correct order of magnitude must be preset for the equivalent circuit data in order that the inverter reaches the status dr02 = 2 "motordata stored". Otherwise the drive remains in dr02 = 3 "error norm motordata" and the identification cannot be carried out.

To use the identification, an operating mode with motor model must be selected in cs00 control mode (cs00 bit 0...3 = 2 or 3) and the inverter may not be in error state, otherwise the input is rejected by dr54.

The determination of the resistance and inductance occurs in standstill (slight rotation of the motor is possible by test signals). For the determination of the main inductance, the drive must be in standstill or must be able to rotate only with small load. The speed is determined by dr44 in % rated speed. The default value is optimal for identification, but the value must be changed if the application requires another speed. Forward direction of rotation.

The motor data and the parameterization of the identification are stored with dr99 = 0. Value 2 "motordata stored" must be displayed in dr02.

Parameterize encoder

If a mode with encoder has been selected, the encoder parameters must be set in the ec group (encoder type, smoothing, etc.)

For more information on encoder parameter setting, see chapter 6.1 Interface to the encoder.

At the end of a successful parameter setting, the value of ec00 status encoder interface = 9 "position value" must be ok.

Identify

The drive must be ready for operation in order to identify:

- The DC link must be loaded.
- ru01 exception state must be equal to 0 "no exception" (if an error message is present, the cause must be removed and a reset must be executed with co00 = 128).
- The corresponding inputs must be set if the drive has safety functionality.
- The ramps (co48...co60) must be parameterized by way that no excessive acceleration forces occur.
- The speed controller has been adjusted already automatically if the inertia in dr32 nd cs17 has been correctly parameterized. Otherwise, the inertia must be preset in terms of magnitude and the automatic adjustment must be carried out by writing on cs99. ☐ Alternatively cs99 can be set to 19 "off" and the speed controller can be adapted manually.
- The torque and current limits are set to 100% (default).

- The modulation is released (in default setting) with co00 = 3 and then co00 = 11 and the drive starts the identification. The progress of the identification can be tracked in dr55 ident state. Some steps may take a few minutes. The final state should be dr55 = 14 "ready". The type of error can be found in dr57 ident error info if the identification ends in 12 "error" (=> Description of dr57 in Chapter 6.2.17 Identification).
- Lock the modulation again (co00 = 0).
- Deactivate the identification with dr54 = 0 and store the identified data with dr99 = 0. By way the controller are parameterized.

Application-specific data

The following items are not complete, but these values must be checked at least. base is operating mode velocity mode.

Speed limits

Speed limits can be parameterized in the vI parameters for the velocity mode

Torque limits	
dr11 max torque	Torque limit of the motor
cs12 absolute torque	Torque limit of the application (is valid in all quadrants)
cs13cs16	Torque limits for the single quadrants
dr13 breakdown torque	Torque for the definition of the speed-dependent limiting characteristic. This value must be increased, if the torque reduction according to a 1/x^2 characteristic starts to early.
Current limits	
de29 inverter maximum current	only display / maximum current for control
dr12 max current	Maximum current of the motor
is11 max current	The maximum current of the inverter can be decreased here (e.g., if the limit for the control should be lowered at motors with high current ripple in order to avoid overcurrent errors)
is35 set current limit	Setting of the maximum current for control (defines the safety distance to the overcurrent switch-off threshold)
Ramps	
co48co51	Values for acceleration / deceleration
co52co59	Values for the jerk in different ramp phases
co60	General parameterization of the ramp generator

Protection functions

The different warning level can be set in the pn parameters. In addition, protection functions can be activated / deactivated (e.g. speed monitoring, motor temperature sensor, etc.). Also the quick stop ramp is parameterized here. When the quick stop ramp becomes active (only in case of an error or shut down and disable operation) is defined in co32 state machine properties.

Controller

The adjustment of the current controller occurs automatically. The controller gain can be adjusted with ds14 current cntrl factor in order to adjust special motors or applications. The value becomes only active if dr99 = 0 is written again afterwards. The speed controller can be optimized manually or via cs99 optimisation factor. When using the optimisation factor, the adjustment of the controller automatically adjusts to the changed speed smoothing times. Longer smoothing times (ec26 / ec27) at constant cs99 result in weaker controller setting. A longer smoothing and by way better high-frequency suppression can offer a smaller value for cs99 and thus more dynamic control. If the field weakening range shall be used, eventually the maximum voltage controller must be adapted to the dynamics of the application (=> Chapter 6.2.9.3.2 Maximum voltage controller).

Deadtime compensation

The deadtime compensation should be switched on for operating modes with motor model. If the complete identification has been executed for the drive + motor, is07 deadtime comp mode = 2 "ident" is the best value.

Switching conditions

The output management (determination of the switching conditions, assignment, filtering, etc.) is carried out in the do parameters.

6.2.3 Synchronous motor

6.2.3.1 Nameplate data

Index	Id-Text	Name	Function
0x2203	dr03	rated current	Rated current
0x2204	dr04	rated speed	Rated speed
0x2205	dr05	rated voltage	Rated voltage
0x2206	dr06	rated frequency	Rated frequency
0x2209	dr09	rated torque	Rated torque
0x2220	dr32	inertia motor (kg*cm^2)	Motor inertia

The rated motor data are entered in this objects.

If motor inertia can be taken from the data sheet this value should be entered in dr32.

If the motor inertia is unknown, cs17 can be set to 0 and instead the total inertia of the motor plus all rigidly coupled inertia can be entered in parameter dr32 (=> also 6.3.6 Determination of the mass moment of inertia).

6.2.3.2 Equivalent circuit data

Index	Id-Text	Name	Function
0x220E	dr14	SM EMK [Vpk*1000rpm]	EMC (peak value of the phase-to-phase voltage) at 1000 rpm in V
0x220F	dr15	SM inductance q-axis UV	Cross inductance (inductance q-axis) in mH
0x2210	dr16	SM inductance d-axis %	Series inductance (inductance d-axis) in % of dr15.
0x2211	dr17	stator resistance UV	Stator resistance in Ohm
0x222C	dr44	speed (Lh/EMK ident.) %	Speed when EMC is identified (automatically preset) in % of rated speed
0x2236	dr54	ident	Starts the identification
0x2237	dr55	ident state	Displays current measurement or status message (e.g. "stator resistance" "ready" or "error")

Parameters dr14, dr15, dr16, dr17 can be taken from a data sheet or automatically determined by the identification.

Mostly only one incuctance is given in the data sheet. This means, series and cross inductance are identical. Then the inductance value must be entered in dr15 and dr16 must be set to 100%.

For identification of the EMC the motor must be able to turn freely without load.

The speed for identification is determined by dr44. This value must only be adjusted if the application only allows low speed (e.g.). With the identification steps at standstill the motor can be moved easily by the test signals.

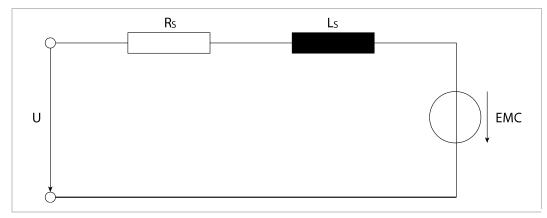


Figure 66: Equivalent circuit diagram synchronous motor

6.2.3.3 Application-specific data

Index	Id-Text	Name	Function
0x2208	dr08	magnetising current %	Magnetising current in % of the rated motor current
0x220B	dr11	max. torque %	Max. torque in % rated torque
0x220C	dr12	max. current %	Max. current in % rated motor current
0x220D	dr13	breakdown torque %	Definition of the limiting characteristic by 1 point
0x2219	dr25	breakdown speed %	(torque at speed) on the 1/x curve
0x221C	dr28	Uic reference voltage	DC reference voltage in V
0x221D	dr29	max. id current fact	Maximum current in the d-axis based on the maximum current (dr12).

For a synchronous motor dr08 should always be set to "off" (=> Chapter 6.2.5 Magnetizing current).

dr08	magnetising current %		0x2208
Value	Name Note		
0	off Magnetising current = 0		
0.1100%		Manual setting of a magnetising current	

The torque can be limited with dr11 in order to protect the mechanics against excessive torques.

This parameter is used together with dr12 to define the saturation characteristic, if the influence of saturation should be considered (=> Chapter 6.2.12 Saturation characteristic (SM)).

dr11	max torque %	0x220B
Value	Note	
06000 %	Maximum permissible torque in% of rated torque	

If a motor is energized with multiple of the maximum permissible value, it can not be protected against destruction either by the motor protection function nor by the temperature sensors. Also too high current can lead to demagnetization of the motor. Therefore the maximum current can be limited.

Thus the current limit also limits the torque.

dr12	max current %	0x220C
Value	Note	
06000 %	Maximum permissible motor current in% of the rated motor current	nt

The limiting characteristic of a synchronous motor is approximately one 1/x characteristic (at activated and correctly parameterized maximum voltage controller) neglecting saturation and similar effects.

This characteristic is defined by dr25 (speed) and dr13 (maximum torque at dr25) (=> Chapter 6.2.9 Field weakening).

The default value for both parameter is 100%. That means, one assumes that the motor at rated speed requires also rated voltage for rated torque.

dr13	breakdown torque %	0x220D
Value	Note	
06000,0 %	Torque for the definition of the 1/x characteristic	

dr25	breakdown speed %	0x2219
Value	Note	
0.11000.0 %	Speed for the definition of the 1/x function in % of the rated limiting of trated value calculated from rated motor voltage, DC link voltage and	

NOTICE

- ➤ The 1/x limiting characteristic is obtained by a negative magnetizing current (Id), that counteracts the pulse wheel voltage, is preset by the maximum voltage controller.
- If a motor is not suitable for field weakening operation, this Id current must be theoretically higher than the maximum permissible or max. available current.
- Thus, the achievable torque rapidly decreases (=> 6.2.9.3.2.1 Limit value at synchronous motors).

The DC link voltage is defined with dr28, designed for the limiting characteristic.

The expected DC link voltage, which is dependent on the mains voltage ($\sqrt{2}$ * U_{mains}) or the AFE voltage should be entered in this object (=> Chapter 6.2.9.4.2 DC link voltage dependence).

dr28	uic reference voltage 0x221C			
Value	Note			
200830V	DC reference voltage in V			

6.2.3.4 Motor protection

Index	Id-Text	Name	Function
0x2221	dr33	motor temp sensor type	0 = KTY 84-130, 1 = PTC, 2 = via encoder, 3 = KTY 83 110, 4 = PT1000
0x2222	dr34	motor protection curr. %	Standstill current (permanent permissible current at standstill) in % of rated motor current
0x2203	dr03	rated current	Rated current = permanent permissible current at rated speed
0x2226	dr38	SM prot min. Is/Id	Application point of the motor protection function in % of the permanent permissible current
0x220C	dr12	max. current %	Max. current in % rated motor current
0x2223	dr35	SM prot time min. Is/Id	Time, after the protection function is triggered at min. current flow (defined by dr38)
0x2224	dr36	SM prot. time Imax	Time, after the protection function is triggered at max. current flow (defined dr12)
0x2225	dr37	SM prot. recovery time	The prot. recovery time is the time, which the protection function counter needs to count from 100% to 0%.

The overtemperature motor protection is parameterized with this objects (=> Chapter 4.4.5 Overtemperature motor (dOH) and chapter 4.4.6 Motor protection switch OH2).

6.2.3.5 System offset

6.2.3.5.1 General

The knowledge of the system position is mandatory necessary for the operation of a synchronous motor (also called systemoffset). The system position detects the mechanical difference between rotor position and position information of the installed encoder system.

NOTICE

> If the system offset is incorrectly measured or preset, the synchronous motor can overspeed uncontrollable.

The following cases must be differentiated:

Operation	Explanation
Operation with an encoder which provides an absolute position information per mechanical or electrical revolution	System position must be determined only once System position measurement is started/controlled by dd00
Operation with an encoder without absolute information	The system position must be redetermined at least after power on or with each modulation release. System position measurement is started/controlled by dd00
Operation without encoder (SCL)	System position must be redetermined at each modulation release. System position measurement is started/controlled by dd01

The determination mode of the system offset is adjusted in parameters dd00 (operation with encoder) or dd01(SCL). Not all modes are available in both operating modes.

dd00	rotor detection				0x3600	
dd01	SCL rotor detection				0x3601	
Bit	Function	Value	Function with encoder Function SCL			
		0, 6, 7	off	off		
		1	cvv with check	reserved		
02	mode	2	cvv only	reserved		
02	mode	3	reserved	cvv only (SCL)		
		4 five step five step				
		5	hf detection	hf detection		
3	start after		No	No		
3	process	8	yes	yes		
		0	hold rotor current	hold rotor current		
45	cvv fin-	16	current to zero	current to zero		
45	ished	32	reserved	to standstill curre	nt	
		48	reserved	reserved		
	system	0		overwrite		
67	offset	64	Function not available	no overwrite		
	(ec-group)	128		reserved		

dd00	rotor detect	rotor detection				
dd01	SCL rotor detection				0x3601	
Bit	Function	Function Value Function with encoder Function SCL				
	180° off-	0	off	off		
8	set(hf det./five step)	256	on	on		

Bit 3 determines after completion of the position identification if it is immediately started with the actual setpoint (standard at SCL), or if the drive remains in "start operation activ" (standard at operation with encoder).

Option "start after process" = no is only useful for SCL operation for tests during start-up (e.g. test of the five-step process).

dd00	rotor detection			0x3600
dd01	SCL rotor detection			0x3601
Bit	Function	Value	Function	
2	start after pro- 0 No			
3	cess	8	yes	

Bit 4 and 5 determines if the alignment current remains active after completion of the system position identification, or if the current is set to zero or to standstill current.

This adjustment is only effective with "start after process = no".

dd00	rotor detect	0x3600			
dd01	SCL rotor d	0x3601			
Bit	Function	Valu	Function	Note	
		е			
	cvv fin-	0	hold rotor current	Threading current remains active	
45		cvv fin-	16	current to zero	The current is set to zero at the end of the threading process
45 ished		32	to standstill cur- rent	The current of ds38 is output after the end of the threading process (only available at SCL)	
			reserved		

Bit 6 and 7 determine if the system position (ec23) shall be overwritten with the identified position.

This selection is only possible at SCL operation in the modes "five step" or "hf detection". With encoder, ec23 is always overwritten with the new identified position.

ec23 is never overwritten at SCL identification mode 3 "cvv without turning".

dd01	SCL rotor detection			0x3601
Bit	Function Value Function			
	system offset (ec-group)	0	overwrite	
6 7		64	no overwrite	
67		128	reserved	
		192	reserved	

dd00	rotor detection				0x3600
dd01	SCL rotor detection			0x3601	
Bit	Function Value Function Note				
	180° offset (hf det./five step) 25	0	off	Depending on the geometry	
8		256	on	tor, the saturation behaviour can be inverted depending on the sign of the current ld. The offset must be a tivated in this case.	•

If the identification is running or completed can be read in dr55.

dr55	ident state	0x2237
Value	Note	Meaning
12	error	Abort of the system position identification with error
14	ready	System position identification successfully completed
17	rotor detection (cvv)	Position identification with "constant voltage vector" mode is running
18	rotor detection (hf detection)	Position identification with "hf detection" is running
19	rotor detection (five step)	Position identification with "five step" is running

6.2.3.5.2 Rotor position detection mode cvv only

A voltage vector with constant electrical position is output in this mode. The amount of the current final value is adjusted dd02, the ramp time for current buildup is adjusted with dd03.

If the rotor can freely rotate, it will rotate to a fixed electrical position. The "rotor detection current" flow time is defined with dd04 before the position is considered to be valid. The required waiting period depends mainly on the vibration of the rotor after position change.

This method is not suitable for IPM motors!

Index	Id-Text	Name	Function
0x3602	dd02	rotor detection current	Alignment current in % of the rated motor current
0x3603	dd03	cvv current ramping time	Time for the current build-up in ms
0x3604	dd04	cvv waiting time	Time, when the alignment current is active (= motor alignment time + decay time of the vibration caused by the alignment)

Possible errors:

dr57	ident error info		0x2239
Value	Note Meaning		
122	rotor det. cvv curr.	Current stiff could not be executed	

6.2.3.5.3 Rotor position detection mode cvv with check

This mode is an extension of the previous mode, which can be used only at operation with encoder.

dd02 to dd04 have the same function as described above.

In order to check the counting direction of the encoder system, the voltage vector is electrical turned about 60° in both directions. The rotor must return min. one rotation about 12° via the encoder system. Otherwise an error is triggered.

At high cogging torque the rotor often goes into the desired position with a residual error. This error is partly corrected in this mode.

Possible errors:

dr57	ident error info	0x2239
Value	Note Meaning	
122	rotor det. cvv curr. Current stiff could not be executed	
123	rotor det. cvv pos.	Encoder position has not turned electrical about min. 12° in the preset direction.

This method is not suitable for IPM motors!

6.2.3.5.4 Rotor position detection mode five step

Index	Id-Text	Name	Function
0x3602	dd02	rotor detection current	Test signal-current level in % of the rated motor current
0x3607	dd07	rotor det. 1.order level	Error threshold for test signal
0x3608	dd08	rot. det. inf. (1.order)	Information content of the test signal

The "five step" method uses the saturation of the motor for detection of the rotor position at standstill.

Five different voltage vectors are applied to the motor within a few ms. The current level to be reached can be preset via parameter dd02. The position of the rotor can be deducted by means on the current rise times.

dd02 should be set to the maximum permissible motor current, since higher current causes higher saturation and thus more precise identification.

If this method can be used for the motor, cannot be calculated previously with the motor data (Ld,Lq).

dd08 indicates the quality of the information content.

Parameter (dd07) defines the level when an error shall be triggered, because the information content is not sufficient (a level of 5% should be selected as starting value).

The information content can be different at different rotor positions. Therefore several different electrical positions should be tested at start-up.

6.2.3.5.5 Rotor position detection mode hf detection

Index	Id-Text	Name	Function
0x3602	dd02	rotor detection current	Current level of the 2nd test signal in % rated motor current
0x3607	dd07	rotor det. 1.order level	Error threshold for 2nd test signal
0x3608	dd08	rot. det. inf. (1.order)	Information content of the 2nd test signal
0x3609	dd09	rotor det. 2.order level	Error threshold for the first test signal
0x360A	dd10	rot. det. inf. (2.order)	Information content from parameters (dr15/dr16): Ld-Lq / Lq * 100%
0x3616	dd22	hf inj. frequency	Frequency of the first test signal
0x3617	dd23	hf inj. optimization factor	Hardness of the adjustment of the test signal controller
0x3618	dd24	hf inject. ampl factor	A voltage amplitude is calculated from the motor data, which shall offer a current of 10% of the rated current. The automatically calculated amplitude can be changed via this factor.

The "hf detection" mode consists of two identification steps.

The difference between Ld and Lq is used in the first test step for rotor position detection.

The frequency of the test signal is determined with dd22.

dd10 displays the information content of the first test signal. Parameter dd09 defines the level when an error shall be triggered if the information content is not sufficient. 20% should be selected as starting value.

Generally, the frequency of the test signal should not exceed 1/8 of the switching frequency. Maximum 500Hz can be selected in dd22 at 4kHz switching frequency (is10). This frequency is sufficient in many cases and minimizes the noise development in the motor.

Subsequently, the polarity of the system position is determined with a second test signal (the "five step" signal => previous chapter).

The level for the information content of the second test signal (which triggers an error) can be adjusted in parameter dd07. Since only the polarity must be detected here, dd07 can be selected smaller than in the real "five step" mode (e.g. 3%).

Several different electrical positions should be tested for the reliability of the rotor position detection at start-up.

NOTICE

An operation with sine-wave filter is not possible parallel to this function

6.2.3.5.6 Example

Example of the single measurement of the system offset at an encoder system with absolute position information.

Proce- dure	Description
1	The motor must be able to rotate freely, the control mode "2: encoder, with model" must be selected in control mode in cs00.
2	dd00 = 1 = cvv with check, no start after prozess, hold rotor current
3	dd02 = 100% (=> rated motor current)
4	Release modulation via the controlword => the measurement starts
5	Measurement completed when dr55 = 14 = ready (=> Description Identification)
6	If the encoder shall be mechanically adjusted to a preset system position, the adjustment can now be executed while st12 state machine display is still set at value 11 "start operation active" and dr55 ident state is set to 14 "ready". A DC current from U to V is impressed in this step. The electrical position of the encoder must be parameterized in ec23 to this alignment position for normal operation. The electrical position of the encoder is displayed in ec22 rho encoder value. If, by rotating the encoder, the value of ec22 is set to zero (e.g.), then ec23 system offset (SM) must also be set to zero. The value of ec23 can only be preset if dr55 ident state is = 0 "off" (after switching off the modulation). The correct value of ec23 should be checked by a restart of the system position calibration.
7	co00 = 0 => Switching off the modulation, the measured system offset under consideration of friction is displayed.
8	dd00 = 0 => rotor detection mode = off

6.2.3.6	Rotor position	n detection in	operation at SC	L (hf injection
0.2.3.0	Rotor positio	n detection in	operation at 50	L (ni injecti

Index	Id-Text	Name	Function
0x3615	dd21	hf injection mode	Off/on of rotor position detection by HF injection
0x3616	dd22	hf inj. frequency	Frequency of the test signal. The switching frequency should be at least 8 times higher than the test signal frequency. For noise reasons, other test signal frequencies are also possible.
0x3617	dd23	hf inj. optimization factor	Hardness of the PI controller
0x3618	dd24	hf inject. ampl. factor	A voltage amplitude is calculated from the motor data, which shall offer a current of 10% of the rated current. The amplitude can be lowered or increased via this factor.
0x3619	dd25	hf inj. speed ctrl. red. factor	Defines the reduction of the speed controller parameters (kp, ki) as long as the HF injection is active
0x361A	dd26	hf inj. scan time	Pt1 filter time The filter time is automatically calculated at dd26 = -1
0x361B	dd27	hf inj. angle precontrol mode	Off/on of the angular advance under load
0x361C	dd28	hf inj. angle prec. factor [°@ InMot]	Describes how many degrees the angle advances at active current = rated current
0x361D	dd29	hf inj. dev. time	Pt1 time for tracking of the hf speed
0x361E	dd30	hf inj. diff rho current res.[°]	Error angle, due to the current resolution of the used inverter. The value corresponds to the error angle, which is caused by noise with the amplitude of one bit. It should be below 2°.

The HF injection allows the detection of the rotor position during running operation at low output frequencies in SCL operation.

A voltage with high frequency (dd22) is modulated for this. A difference between the inductance in the q and d-axis (Lq> Ld) of the motor is necessary in order to detect the rotor position. The difference is depending on the construction of the motor.

NOTICE

Important: the information content may not be lost under load (e.g. by saturation). An operation with sine-wave filter is not possible parallel to this function.

The speed range wherein the function is active, is defined by parameters ds36/ds37 (min/max speed for stab current). The RF signal is switched off above this range and system position and speed are estimated by the motor model. The speed estimated by the HF controller is usually very noisy and must be additionally filtered by a PT1 element (dd29).

With pronounced IPM characteristics of the motor (Lq>>Ld) it is reasonable to switch off the stabilisation current and the stabilisation term (ds30).

The stator resistance adaptation is internally deactivated with activation of the HF injection.

6.2.3.7 Quick start-up of a synchronous motor

The start-up should always be done with co01 modes of operation = 2 "velocity mode", also if another operating mode shall be used later.

Drive must not be in operation

co00 (CiA 0x6040) controlword = 0 or hardware modulation lock

Load default data

Default data are automatically loaded in all parameters with co08 = 2 and then co09 = 1.

Select operating mode

The operating mode is selected in cs00 bit 0...3 (0 = v/f characteristic operation / 1 = with encoder, without model / 2 = with encoder, with model / 3 = without encoder, with model = SCL).

Preset motor data

With the input of the first motor data the state of dr02 changes to 0 "fill motordata".

The following data are additionally required for closed-loop operation with or without encoder:

dr00 motor type: 1: Synchronous motor dr03 rated current: rated motor current

(for the electronic motor protection func-

tion)

dr04 rated speed / dr06 rated fre-

quency:

Pole-pair number

dr04 rated speed / dr05 rated voltage: Rated point (voltage for rated speed)

dr33 motor temp sensor type: Selection motor sensor (PTC or KTY). If

no motor temperature sensor is available, monitoring must be deactivated with pn12

= 7.

dr09 rated torque: torque reference value

dr32 inertia motor (kg*cm^2): for automatic parameterization of the

speed controller (together with cs17 inertia

load).

Equivalent circuit data dr14, dr15, dr16, dr17

There are 2 possibilities for the parameterization of the equivalent circuit data.

Either the equivalent circuit data are taken from one data sheet.

Or the equivalent circuit data are automatically determined completely through identification by the converter (dr54 = 1).

Values within the correct order of magnitude must be preset for the equivalent circuit data in order that the inverter reaches the status dr02 = 2 "motordata stored".

Otherwise the drive remains in dr02 = 3 "error norm motordata" and the identification cannot be carried out.

To use the identification, an operating mode with motor model must be selected in cs00 control mode (cs00 bit 0...3 = 2 or 3) and the inverter may not be in error state, otherwise the input is rejected by dr54.

The determination of the resistance and inductance occurs in standstill (slight rotation of the motor is possible by test signals).

For the determination of dr14 SM EMF, the drive must be in standstill or must be able to rotate only with small load.

The speed is determined by dr44 in % rated speed. The value must be changed if the application requires another (lower) speed. Forward direction of rotation.

The motor data and the parameterization of the identification are stored with dr99 = 0. Value 2 "motordata stored" must be displayed in dr02.

Parameterize encoder

If an operating mode with encoder is selected, the encoder parameters must be adjusted in the ec group (encoder type, smoothing, etc.). More information about encoder parameterization can be found in chapter 6.1 Interface to the encoder. At the end of a successful parameterization the value of ec00 status encoder interface must be = 9 "position value ok".

Prepare system position-identification

The knowledge of the system position is mandatory necessary for the operation of a synchronous motor (also called systemoffset). The following cases must be differentiated: Operation with encoder => system position measurement is checked by dd00 Operation without encoder (SCL) => system position measurement is checked by dd01

For SCL operation, dd01 is set to the correct value after default loading (point 2). dd00 must be set to value 1 for the operation with encoder, by way that the system position adjustment is executed with the following identification.

Identify

The drive must be ready for operation in order to identify:

- The DC link must be loaded.
- ru01 exception state must be equal to 0 "no exception" (if an error message is
 present, the cause must be removed and a reset must be executed with co00 =
 128).
- The corresponding inputs must be set if the drive has safety functionality.
- The ramps (co48...co60) must be parameterized by way that no excessive acceleration forces occur.
- The speed controller has been adjusted already automatically if the inertia in dr32 nd cs17 has been correctly parameterized. Otherwise, the inertia must be preset in terms of magnitude and the automatic adjustment must be carried out by writing on cs99. ☐ Alternatively cs99 can be set to 19 "off" and the speed controller can be adapted manually.
- The torque and current limits are set to 100% (default).

Motor parameterization

- The modulation is released (in default setting) with co00 = 3 and then co00 = 11 and the drive starts the identification. The progress of the identification can be tracked in dr55 ident state. Some steps may take a few minutes. The final state should be dr55 = 14 "ready". The type of error can be found in dr57 ident error info if the identification ends in 12 "error" (=> Description of dr57 in Chapter 6.2.17).
- Lock the modulation again (co00 = 0).
- Deactivate the identification (of the equivalent circuit data and the system position) with dr54 = 0 and dd00 = 0. The adjustment of dd00 is different if an encoder without absolute position is used (see chapter 6.2.3.5 System offset). Accept the identified data with dr99 = 0 and parameterize the controllers.

Application-specific data

The following items are not complete, but these values must be checked at least. base is operating mode velocity mode.

Speed limits

Speed limits can be parameterized in the vI parameters for the velocity mode

Torque limits		
dr11 max torque	Torque limit of the motor	
cs12 absolute torque	Torque limit of the application (is valid in all quad-	
	rants)	
cs13cs16	Torque limits for the single quadrants	
dr13 breakdown torque	Torque for the definition of the speed-dependent	
	limiting characteristic. This value must be in-	
	creased, if the torque reduction according to a	
	1/x^2 characteristic starts to early.	
Current limits		
de29 inverter maximum	only display / maximum current for control	
current		
dr12 max current	Maximum current of the motor	
is11 max current	The maximum current of the inverter can be decreased here (e.g., if the limit for the control should be lowered at motors with high current ripple in order to avoid overcurrent errors)	
is35 set current limit	Setting of the maximum current for control (defines the safety distance to the overcurrent switch-off threshold)	
Ramps		
co48co51	Values for acceleration / deceleration	
co52co59	Values for the jerk in different ramp phases	
co60	General parameterization of the ramp generator	

Protection functions

The different warning level can be set in the pn parameters. In addition, protection functions can be activated / deactivated (e.g. speed monitoring, motor temperature sensor, etc.)

Also the quick stop ramp is parameterized here. When the quick stop ramp becomes active (only in case of an error or shut down and disable operation) is defined in co32 state machine properties.

Controller

The adjustment of the current controller occurs automatically. The controller gain can be adjusted with ds14 current cntrl factor in order to adjust special motors or applications. The value becomes only active if dr99 = 0 is written again afterwards. The speed controller can be optimized manually or via cs99 optimisation factor. When using the optimisation factor, the adjustment of the controller automatically adjusts to the changed speed smoothing times. Although longer smoothing times (ec26 / ec27) at constant cs99 result in weaker controller setting, a longer speed smoothing through better high-frequency suppression can offer a smaller value for cs99 and thus more dynamic control. If the field weakening range shall be used, eventually the maximum voltage controller must be adapted to the dynamics of the application (=> Chapter 6.2.9.3.2 Maximum voltage controller).

Deadtime compensation

The deadtime compensation should be switched on for operating modes with motor model. If the complete identification has been executed for the drive + motor, is07 deadtime comp mode = 2 "ident" is the best value.

Switching conditions

The output management (determination of the switching conditions, assignment, filtering, etc.) is carried out in the do parameters.

6.2.4 Structure overview

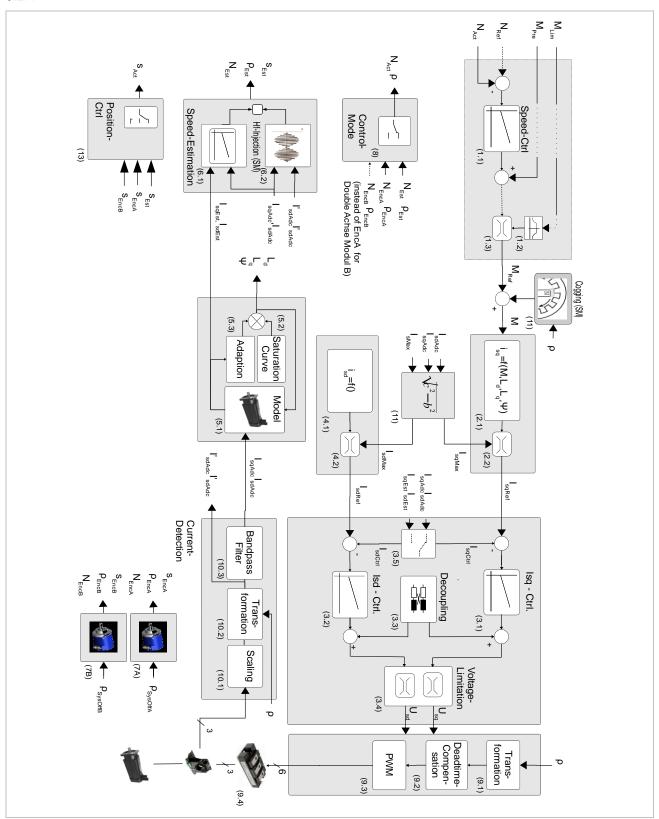


Figure 67: Structure overview motor model

1	Calculate the reference torque			
1.1	Speed controller (Chapter 6.3)			
	The PI speed controller gives the torque to regulate the speed difference between set and actual speed.			
	Variable proportional factor (Chapter 6.3.3)			
	Variable proportional/integral factor (speed) (Chapter 6.3.4)			
	Determination of the mass moment of inertia (Chapter 6.3.6)			
	Speed controller PT1 output filter (Chapter 6.3.7)			
	Torque precontrol (Chapter 6.3.8)			
1.2	The maximum possible torque is reduced in the field weakening. A limitation of the set torque is required in order to bring the drive not into voltage limit.			
	Fehler! Unbekanntes Schalterargument. (Chapter 6.2.9.4)			
1.3	Calculation of the max. torque limit in consideration of maximum currents and detected motor data (Ld, Lq, Ψ)			
	Adaption (Chapter 6.2.11)			
	Torque limiting characteristic (Chapter 6.2.9.4)			
	Current (Chapter 6.2.8)			
	Torque limits (Chapter 6.4)			

2	Calculate the reference active current from torque		
2.1	1 With adapted and/or detected motor data of the saturation characteristic (Ld,Lq,Ψ)		
	$isq = \frac{M}{3 \cdot ppz \cdot \Psi + isd \cdot (Lsd - Lsq)}$		
	Adaption (Chapter 6.2.11)		
	Saturation characteristic (SM) (Chapter 6.2.12)		
2.2	.2 Limitation to the max. active current		
	Currentlimitations (Chapter 6.2.8)		

3	Converting the set currents into output voltage		
3.1	Pi-current controller in d/q system		
3.2	Current control (Chapter 6.2.6)		
3.3	Precontrol of the current controller		
	Current control (Chapter 6.2.6)		
3.4 Voltage limitation			
	Maximum voltage (Chapter 6.2.9.3)		
3.5	Actual values current controller		
	 Measurement / model currents (Chapter 6.2.7) 		

4	Calculation of the reference idle current		
4.1	Magnetizing current (Chapter 6.2.5)		
	Maximum voltage (Chapter 6.2.9.3)		
	Synchronous motor with reluctance torque (Chapter 6.2.5.2.3)		
	Model stabilization		
	Stabilisation current / standstill current (only SCL) (Chapter 6.2.15.3)		
	Sine-wave filter and capacitor current compensation (Chapter 6.2.22 Sine-wave filter)		
4.2	Limitation to the max. reactive current		
	Current (Chapter 6.2.8)		

5	Adaptation and saturation characteristic of the motor equivalent circuit diagram data		
5.1	Motor model		
	Rotor position detection in operation at SCL (hf injection) (Chapter 6.2.3.6)		
	Model control (ASM and SM) (Chapter 6.2.15)		
	Model stabilization		
	Stabilisation current / standstill current (only SCL) (Chapter 6.2.15.3)		
	Adaption (Chapter 6.2.11)		
5.2	Saturation characteristic		
	Saturation characteristic (SM) (Chapter 6.2.12)		
5.3	Adaption (only with motor model)		
	Adaption (Chapter 6.2.11)		
	Control mode (with encoder / encoderless) (Chapter 6.2.14)		

6	Motor model with estimated rotor position (only for SM)		
6.1	Speed estimation		
	Model control (ASM and SM) (Chapter 6.2.15)		
	Model stabilization		
	 Stabilisation current / standstill current (only SCL) (Chapter 6.2.15.3) 		
6.2	Rotor position detection (SM)		
	Rotor position detection in operation at SCL (hf injection) (Chapter 6.2.3.6)		
	System offset (Chapter 6.2.3.5)		

7	Encoder evaluation	
Parameterization of the encoder system (Chapter Interface to the encoder 6.1)		Parameterization of the encoder system (Chapter Interface to the encoder 6.1)
	•	System offset (Chapter 6.2.3.5)

3	}	Control mode	
		•	Control mode (with encoder / encoderless) (Chapter 6.2.14)

9	Conversion of the voltage in the d/q system into control pulses for the power components (IGBTs)	
9.1	Transformation of the voltage of d/q \rightarrow a/b \rightarrow uvw with angle (ρ)	
9.2	Dead time compensation based on phase currents	
	Deadtime compensation (Chapter 6.2.18)	
9.3	Pulse width modulation (PWM) with adjusted switching frequency	
	Switching frequency adjustment and derating (Chapter 6.2.19)	
9.4 Driver control of the IGBT'S		

10	Current measurement	
10.1	Phase current detection	
10.2	Transformation of the phase currents with angle (ρ)	
	$uvw \rightarrow from \rightarrow d/q system$	
10.3	Band-pass filter (=> Chapter 6.2.22 Sine-wave filter)	
	 Rotor position detection mode hf detection (Chapter 6.2.3.5.5) 	
	Rotor position detection in operation at SCL (hf injection) (Chapter 6.2.3.6)	

11	Maximum set current setting
	Currentlimitations (Chapter 6.2.8)

12 Cogging (SM)	
	Cogging torque compensation (SM) Current (Chapter 6.2.13)

1	13	Position control	
		•	Source selection for the position control (Position controller source Chapter 6.5.3.3)

6.2.5 Magnetizing current

6.2.5.1 Magnetizing current asynchronous motor

The rated magnetizing current of an asynchronous motor can be calculated via cos(phi) and rated output current or directly preset by parameter dr08.

With the automatic calculation of cos (phi) at major motors (> 30kW) one obtain often too high magnetizing current. This high current causes additional stator losses and the drive reaches the voltage limit faster at higher speeds. Since the increased current must be reduced again via the maximum voltage controller causes negative effects in the dynamic operation.

The actual calculation is based on the accuracy of the type plate data, especially of the rated current.

dr08	magnetizing current %	0X2208
Value	Meaning	
off	Current is calculated automatically	
0.1100%	Magnetizing current in % of the rated motor current	

act Uic voltage (ru14) modulation grade (ru17) dr08 ds11 act. frequency dr25 dr28 dr05 dr03 fc03 switch dr08=0 field weakening start point flux curve calcula-tion rated fc00, fc01, fc02 PI control Compen-sation C-Sinus-Filtermotor modell actual flux time Flux limit Mit ds55 set reference flux fc18, fc19 ₽ limit fc16 dr12, is11 OL2 limits limit t reference magnetising

6.2.5.1.1 Generation of the magnetizing current (overview)

Figure 68: Generation of the magnetizing current

6.2.5.2 d-current emponent synchronous motor

6.2.5.2.1 Generation of the d-component (overview)

The following picture indicates the composition of the setpoint for the magnetizing current (IdRef) during operation.

Further current components can be active during standstill, identification or measurement of the system position.

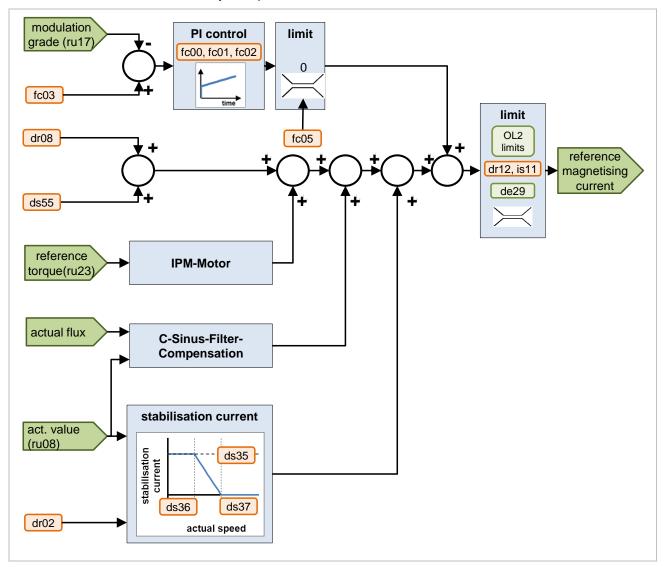


Figure 69: Generation of the d-component

6.2.5.2.2 Standard synchronous motor

A magnetizing current can be preset in 2 identically working objects at synchronous motor: dr08 (only positive values) and ds55. The settings are added.

dr08	magnetizing current %	0x2208
Value	Meaning	
off	Current is calculated automatically	
0.1100.0%	Magnetizing current in % of the rated motor current	

ds55	Isd offset	0x2437
Value	Meaning	
-800.0%800.0%	Magnetizing current in % of the rated motor current	

A positive magnetizing current has no influence for the torque buildup at synchronous motors if the inductance of the d and q axis is equal.

As standard, no settings need to be made here.

Possible exceptions:

- Increase of the motor losses at operation without braking resistor.
- Checking of the system position (the motor may not offer torque through current injection in the d-axis).

A negative magnetising current is required in the field weakening. This current is automatically given via the maximum voltage controller (=> Chapter 6.2.9 Field weakening).

6.2.5.2.3 Synchronous motor with reluctance torque

If the inductances Ld and Lq are different, a reluctance torque can be generated by setting a d-current component (magnetising current) which amplifies the torque generated by the magnets.

This effect is particularly pronounced at IPM motors.

Operation with encoder feedback:

The Id-current must be preset depending on the actual set torque of the speed controller for optimal operation (preferably low motor current).

In this way losses and possible inverter size can be reduced.

mo03	Fill table	sel. (mo	04mo10)		0x3803	
Bit	Func-	Value	Plaintext	Notes		
	tion					
0	sel.	0	ctrl card	The tables are filled by writing on mo00, mo03 and dr99, ds04. Here, Id is set to 0A and depending on the saturation coefficients, the current for Iq = f(M) is calculated. mo09 from dr12 mo10 from dr11		
		1	external	The tables must be filled externally.		

Index	Id-Text	Name	Function
0x3804	mo04	Isq opt. Array(Iq=f(M))	ARRAY (16, float32, [A])
0x3805	mo05	Isd opt. Array(Id=f(M)	ARRAY (16 ,float32, [A])
0x3806	mo06	MLim array (M=f(Imax))	ARRAY (16 ,float32, [Nm]), this table is the result of mo04, mo05, if mo03 selection = 0 "ctrl card" is selected
0x3809	mo09	Current Tab. x-axis	Reference value for the x-axis (float32 [A]]
0x380A	mo10	Torque Tab. x-axis	Reference value for the x-axis (float32 [Nm]]

Operation without encoder feedback:

At operation without encoder feedback (SCL), the table mo05 must be filled with zeros when the high-speed model (ds30) is selected. The optimum apparent current is given automatically.

6.2.6 Current control

This description is not valid for v/f characteristic operation!

The current controller (ds00...ds03) are automatically precharged by writing on dr99= 0 based on the equivalent circuit data.

Therefore it must be ensured that the equivalent circuit data are correct for the connected motor (e.g. by identification).

Index	Id-Text	Name	Function
0x2400	ds00	KP current q-axis (V/A)	Current controller gain, effects proportional- and in-
0x2432	ds02	KP current d-axis (V/A)	tegral part
0x2401	ds01	Tn current q-axis	Current controller-reset time, effects the integral part
0x2403	ds03	Tn current d-axis	(Ki = Kp / Tn)

If the current controller are adjusted manually, dr99 motordata control must be set to 1 "store motordata, no reg", otherwise the controller are automatically set to the calculated values with each power on of the inverter.

The inductance changes at some motors (e.g. by saturation). With the default current controller setting an overshoot can occur at current setpoint change which can trigger an overcurrent error.

The current controller can be too hard at standard design also at very dynamic changes, high current ripple or other special applications.

The total current controller gain (Kp and Ki of both controllers) can be reduced or increased with ds14 current control factor.

Index	Id-Text	Name	Function
0x240E	ds14	current ctrl. factor	Percentage factor for the proportional and integral gain of both current controllers (q-axis and d-axis) (Value range 0.1800.0%)

The adjustment of ds14 becomes only effective if a recalculation of the current controller is started via dr99 = 0 or after restarting the inverter, if dr99 is set to 0 "store motordata,init reg".

Additionally at synchronous motors the current controller can be adjusted depending on the saturation.

For motors that are driven much above saturation, not only the EMF, also the inductance changes. Thus the current controller for the saturation is parameterized too hard. An automatic adjustment of the current controller gain can be reached with this functions in parameter ds04 current mode.

ds04	current mode 0x2404				
Bit	Function Value Function Notes (only for synchronous motors)			otors)	
		0	off	no saturation-dependent curren ment	t controller adjust-
9-10	sat. Lsq on Isq ctrl.	512	kp,ki	Proportional and integral gain o adjusted	f the Iq-controller are
·	1024	kp	Only proportional gain of Iq controller is adjusted		
		1536	reserved		
		0	off	No saturation-dependent currer ment	t controller adjust-
12-13 sat. Lsd of Isd ctrl.	sat. Lsd on	4096	kp,ki	Proportional and integral gain o adjusted	f the Id-controller are
	isa ctri.	8192	kp	Only proportional gain of Id con	troller is adjusted
		1228 8	reserved		

The saturation characteristic in dr and mo parameters must be parameterized accordingly to activate this function (=> Chapter 6.2.12 Saturation characteristic (SM)).

This parameter is adjusted automatically depending on the motor type.

Only in very special applications it may be useful to change this value

ds04	current r	node	0x2404			
Bit	Func- tion	Value	Function	Notes (only for synchronous motors)		
		0	d-axis (SM)			
		16	reserved			
4-5	priority	32	compres- sion + dyn. decoupling			
		48	auto select (ASM)	The current controller priority is changed depending on the operating point. Initial setting for ASM		

Motor parameterization

Index	Id-Text	Name	Function
0x240F	ds15	dyn dec ctrl. fac- tor	Adjustment of the dynamic proportion of the decoupling: 100% - ds15 forms the proportion of static decoupling. (Parameter is only effective if value 32 "compression + dynamic decoupling" is selected in ds14 for priority).
0x2410	ds16	anti windup speed level	Activation level of the anti windup limitation of the current controllers. Raising the AW level can increase the dynamic range. (Parameter is only effective if value 32 "compression + dynamic decoupling" is selected in ds04 for priority).

6.2.7 Measurement / model currents

6.2.7.1 Control to model currents

At operation with model (cs00 bit 0...3 = 2 or 3) a motor model calculates the model currents from the voltages and motor parameters.

It is adjusted with bit 6 of ds04current mode that the current controller uses the estimated (instead measured) model currents as controller feedback.

This is useful e.g. at HF spindles, where the current measurement is falsified by high current ripple of the motor current, or due to saturation effects high-frequency harmonics are contained in the current which can activate the controller.

ds04	current mode	current mode			
Bit	Function Value Function Notes				
6	C surrent control	0	off	Control to measuring curr	ents
О	6 current control		on	Control to model currents	

This model currents are adjusted for the current controller via timing relay ds08deviation control time to the measured current in order to prevent a long-term divergence of measuring and model current.

Index	Id-Text	Name	Function
0x2408	ds08	deviation control time	Pt1-time for tracking the model current

This time can usually remain unchanged.

6.2.7.2 Observer

An observer can be activated with bit 7 of ds04 current mode. This can improve the model accuracy at high output frequencies.

ds04	current mode				0x2404	
Bit	Function Value Function			Notes		
7	7	obcorvor	observer 0 off	off	Observer for model ourren	to on / off
,	observer	128	on	Observer for model currents on / off		

Index	Id-Text	Name	Function
0x2407	ds07	observer factor	Defines the influence of the observer

The default value must only be changed in exceptional cases.

6.2.7.3 Software filter

Averaging over two measured values can be activated for interference suppression with bit 11 of ds04 current mode. This function can be reasonable especially at 4 kHz switching frequency, if the motor has a high current ripple due to its low inductance.

ds04	current mode		0x2404		
Bit	Function Value Function			Notes	
11	11 current sw. filter	0	off	Averaging over two mass	oured values on / off
11		2048	on	Averaging over two meas	sured values on / on

The software filter is always activated internally at switching frequencies higher than 4 kHz. ds04 bit 11 has only influence at lower switching frequencies.

6.2.7.4 Decoupling

The decoupling is important for dynamic behaviour of the current control at fast speed or current changes.

For good results it must be ensured that the equivalent circuit data are correct for the connected motor (e.g. by identification).

Normally it can be calculated with the default value "1 decoupling on" in ds04 current mode.

ds04	current mod	de		0x2404	
Bit	Function	Value	Function	Notes	
		0	off	Decoupling off	
		1	on	Decoupling on	
		2	only q-axis	Only for special applications	
		3	only d-axis		
	current		only decoup (d	Only current decoupling, no speed-dependent pre-	
02	decou-		and q)	control of the voltage	
02	pling	5	only w1 precontrol	Only speed-dependent precontrol of the voltage	
	pinig	6 only Rs precontrol		Only for special applications	
					Decoupling on
		7	decoup and compl	additionally a speed and current-dependent torque	
		′	precontrol	limit is calculated, which is effective as absolute upper	
				limit	

Especially for operation without encoder, the (estimated) speed can be noisy, so the decoupling provides too many disturbances.

In this case, the frequency/speed can also be smoothed.

Index	Id-Text	Name	Function
0x2405	ds05	omega mech precontrol time	Filter time for the precontrol. The default value for this function is 2 ms. For high dynamic processes, when the speed must be changed in a ms range, this value can be too high. In these applications it is recommended to set the time to zero.
0x2406	ds06	omega decoupling time	Filter time for the decoupling.

6.2.8 Currentlimitations

The maximum permissible or possible current for the motor is limited by several parameters (=> also chapter 4.4.8 Maximum current).

Index	Id-Text	Name	Function	
0x201D	de29	inverter maximal current	Maximal current of the inverter at rated switching frequency	
Specification in in- struction manual		Short-time current limit at 0 Hz	Error OL2 is triggered if the current is exceeded	
0x220C	dr12	max current %	Permissible max. current in % of the rated motor current	
0x350B	is11	max current [de28 %]	Permissible max. current in % of the inverter rated current	
0x350E	is14	overload protection mode	Current limitation on short-time current	
0x3523	is35	set current limit	Safety distance to the overcurrent (OC)	

The current limit defined by the inverter and is35 set current limit is displayed in de29 inverter maximal current.

is35 defines the safety distance between the control limit and the overcurrent switch-off threshold. If this is too small, e.g. due to a very high current ripple, the permissible maximum current can be reduced with is35 is 35 is a "PowerOn" parameter. is 35.

The maximum permissible current for the motor is entered in dr12max current %. Exceeding of this current could e.g. demagnetize a synchronous motor or the motor winding can be overloaded.

An inverter-dependent current limit can be preset in is11 max current [de28 %] in is11 max current [de28 %] (e.g. to reduce heating).

A further inverter dependent current limit is given by the short-time current limit. This is depending on the output frequency and the switching frequency. The short-time current limit at 0 Hz can be taken from the instruction manual.

At rated switching frequency the short time current limit increases in the range of 0 to 10 Hz from the 0Hz value to de29 inverter maximal current.

is14 overload protection mode is available to prevent OL2 errors. The permissible current is limited depending on OL2 by this function (=> Chapter 4.4.2 Overload power components (OL2)).

The listed limits above limit the total current. The d-current component has priority, the active current component is limited by the total limit and the d-component.

The activation of the overload protection mode causes a dynamic current limitation and thus also a torque limitation. For applications in the field of lifting and lowering, this can lead to any sag of the loads!

The d-current and the currents which identify the motor parameters are always limited by the switching frequency-dependent short-time current limit at 0Hz (independent on the adjustment of is14) (=> Chapter 4.4.2 Overload power components (OL2)).

6.2.9 Field weakening

6.2.9.1 Synchronous motor

The d-current component is normally equal to zero in a synchronous motor.

The "field weakening range" is the speed range, which can only be reached if a negative Id is set.

This negative magnetising current (Id), that counteracts the pulse wheel voltage is preset by the maximum voltage controller. Thus higher speeds can be reached with the same torque (but higher total current).

If the inverter is in error state, the magnetising current is = 0 A.

The motor regenerats the full rotor voltage into the inverter.

```
Rotor voltage = \frac{EMC \ voltage \ constant * actual \ speed1000 \ rpm}{= model}
```

This voltage must not be higher than the overvoltage threshold, otherwise the inverter will be damaged.

```
Maximum speed
= \frac{max.voltage * 1000 rpm voltage constant (dr14)}{}
```

The safety distance which should be maintained to the max. speed is preset with pn70 overspeed factor (EMF). A value of 90% for pn70 means, the error is triggered at 90% of the max. theoretically permissible speed value. The resulting limit value is displayed in pn72.

The response to the error is defined with pn71 E. overspeed (EMF) st. mode. Since this speed range should only be reached when the motor "runs away" or the controllers are badly adjusted, the safe response is 0: fault.

If the speed measurement is decelerated (smoothing by Pt1 and scan time) this deceleration must be considered and pn70 must be selected lower.

NOTICE

The advantage of higher max. speed is contrary to several disadvantages:

- the drive has more "speed oscillation" as in the base speed range
- Not all motors are suitable for field weakening operation. That means, a very high magnetizing current is required to reduce the voltage, and thus be able to reach higher speed.
- The rotor position information must be very exactly. A system position error of a few degrees (e.g. through malfunctions or inaccurate encoder mounting) can make the drive out of control.

6.2.9.2 Asynchronous motor

The rated flow is reduced according to a 1/x characteristic in the field weakening range, dependent on the output frequency.

The weak time (n_w) is calculated from parameters dr05, dr28, dr25 (=> Field weakening / Torque limiting characteristic Chapter 6.2.9.4).

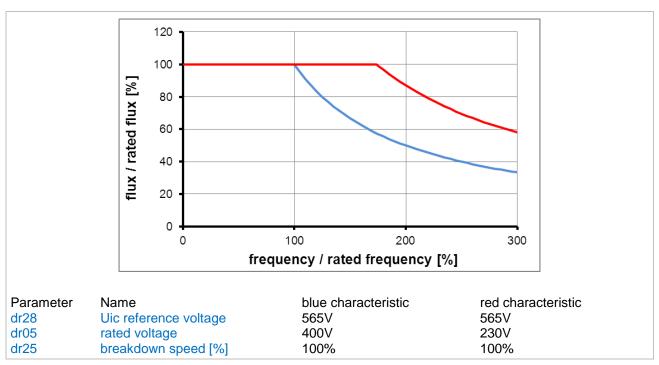


Figure 70: Field weakening range asynchronous motor

6.2.9.3 Maximum voltage

6.2.9.3.1 Maximum output voltage

The output voltage of the inverter is generated by a pulse-width modulation of the DC link voltage.

A modulation factor of 100% means, that the amplitude of the motor voltage (phase-phase voltage) is equal to the DC link voltage.

The effective value of the motor voltage can be increased over 100%, however the output voltage differ from the sinusoidal form.

Therefore additional harmonics occur at a modulation factor over 100% that generate oscillating torque or additional losses in the motor. The voltage distortion from approx. 103% often effects unsmooth motor and control behavior.

Index	Id-Text	Name	Function
0x3704	fc04	max. modulation grade	Adjustment of max. permitted modulation grade.

6.2.9.3.2 Maximum voltage controller

The maximum voltage controller servers for a reduction of the "counter voltage" at asynchronous motor via the flux and at synchronous motor via the reactive current (Id).

The voltage limitation occurs by flux reduction for the asynchronous machine. The motor flow can be reduced by the controller to ¼ of the value (according to the magnetization characteristic).

For the synchronous machine, voltage limitation occurs by providing a negative magnetization current. The maximum value of this current is defined with parameter fc05 Umax reg. limit.

The controller can only reduce the flow or regulate the ld to negative values.

Index	Id-Text	Name	Function
0x3700	fc00	Umax regulation mode	Maximum voltage controller activation
0x3701	fc01	KP Umax [%Irated/%U]	Proportional gain of the controller usually only causes trouble and should normally remain at 0
0x3702	fc02	Ki Umax [%Irated/%U s]	Integral gain of the controller
0x3703	fc03	Umax reference	The setpoint for the maximum voltage controller (fc03) should be at least 2% lower than the maximum modulation grade (fc04).
0x3704	fc04	max. modulation grade	Higher differences can also be required dependent on the desired dynamics.
0x3705	fc05	Umax reg limit	Limit for maximum voltage controller

fc00	Umax re	gulation	0x3700		
Bit	Func- tion	Value	Function	Notes	
		0	off	Controller off	
03	03 mode	1	on	Controller on / setpoint = fc03	
		2,3	reserved		
4	4 stop- ping	0	yes, usd ctrl	The maximum voltage controller rent controller in the d componvoltage limit. Initial setting for S	ent has reached the
		16	No	No stopping of the maximum v setting for ASM	oltage controller. Initial

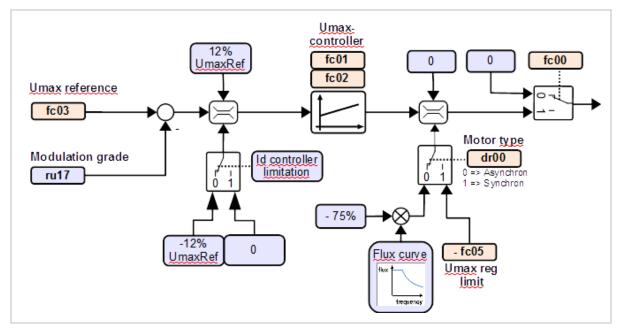


Figure 71: Maximum voltage controller

The optimal integral gain of the maximum voltage controller can not be calculated from the equivalent circuit data of the motor.

The minimum required value for fc02 can be rough calculated from the desired dynamics of the application.

Example:

A negative Id of 100% Irated shall be build up in 20ms. The setpoint fc03 shall be 97% and the maximum value fc04 shall be 103%.

%Irated	100
%U	= fc04 - fc03 = 6%, if the controller is inside the limit
Time	20ms = 0.02s
Ki	= $100 / 6 / 0.02 = 833$ %Irated / %U / second => Ki (fc02) must be selected >833%, because the voltage limitation is to be avoided.

6.2.9.3.2.1 Limit value at synchronous motors

The negative limit for the maximum voltage controller for synchronous motors is defined with fc05:

Index	Id-Text	Name	Function
0x3705	fc05	Umax reg. limit	Maximum current, that shall be supplied from the maximum voltage controller for compensation of the pulse wheel voltage (% to rated motor current).

The optimal limit value is depending on the motor data (motors designed for field weakening) and is often in the range of 100%...200% of the rated current.

The maximum possible torque can not be reached if the limit is selected too low. The controller can remain at the limit if it is selected too high.

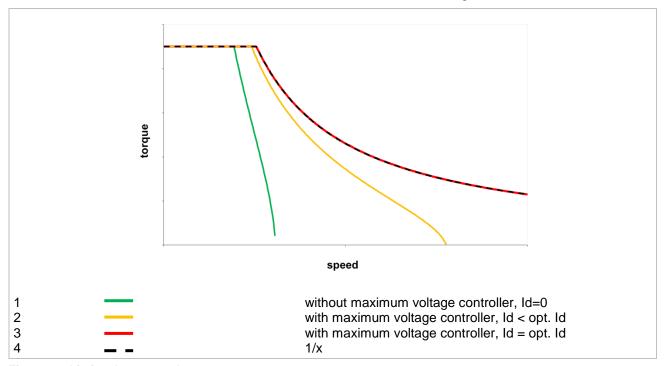


Figure 72: Limit value at synchronous motors

6.2.9.3.2.2 Limit value at asynchronous motors

The limit value at asynchronous motors is selected by way that the set flow by the controller can be reduced always about 75%.

6.2.9.4 Torque limiting characteristic

6.2.9.4.1 Function

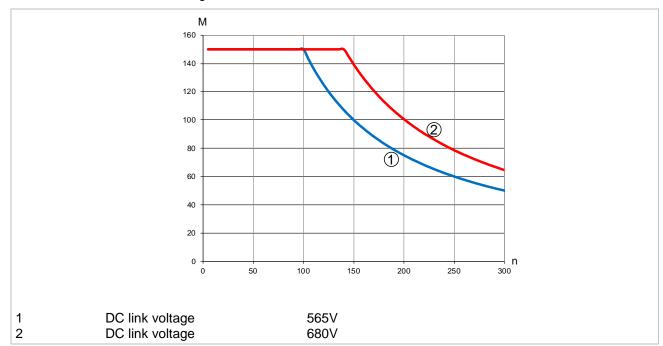
If the motor is overloaded, i.e. if a torque is required, beyond its limit torque, the current controller reaches their voltage limit. Furthermore the maximum voltage controller reduces the flux or the Id too strong and by way the maximum reachable torque is also reduced.

Therefore the limiting characteristic becomes effective at higher speeds.

The maximum reachable torque is reduced approximately at asynchronous motors to a 1/x function and at synchronous motors to a 1/x function. This is parameterized in ds11.

This parameter is automatically adjusted with the setting in dr00 asynchronous motor or synchronous motor.

ds11	torque mode	0x240B		
Bit	Function	Value	Plaintext	Notes
0 1	field weak curve	0	1/x	Synchronous motor
01	limit	1	1/x ²	Asynchronous motor


6.2.9.4.2 DC link voltage dependence

The maximum achievable torque is dependent on the DC link voltage.

The DC link voltage is entered in dr28, valid for the limiting characteristic.

Index	Id-Text	Name	Function
0x221C	dr28	Uic reference voltage	Reference value of the DC link voltage for the definition of the field weakening range and the limiting characteristic in V.

For higher DC link voltages the limiting characteristic would shift to higher speed and with lower DC link values to lower speeds.

Example: maximum reachable torque of a synchronous motor depending on the DC link voltage:

Figure 73: Maximum torque depending on the DC link voltage for the synchronous motor

If the characteristic shall be adjusted automatically to the actual DC link voltage can be defined with ds11 bit 2 and 3.

ds11	torque mo	de	0x240B		
Bit	Function	Valu	Plaintext	Notes	
		е			
	Uic de-	0	off	no adaption	
pendant		4	generally on	Adaptation in both speed direct	ions
23	torque	8	only reduction	Adaption only to lower speeds	
	curve	12	reduction, on at	in standard operation only adap	tion to lower speeds,
	adaption	12	FaultReact.	while the fault-reaction ramp als	so to higher speeds

Bit2-3 = 4 "generally on":

The maximum torque of the motor is generated at this value. The disadvantage is that an unstable or dynamic changing DC link voltage can cause unsmooth at operation at the limiting characteristic.

Bit2-3 = 8 (only reduction):

This is the recommended setting. The shifting of the characteristic curve to the left towards lower speeds is carried out, which is physically necessary due to a too low DC link voltage. A shifting to higher speeds, with higher DC link voltage, does not take place. That means, the characteristic is only shifted if the DC link voltage is lower than dr28 "uic reference voltage".

Bit2-3 = 12 (reduction, on at FaultReact):

Behavior as for value 8 with one exception: In order to be able to reach the maximum torque during the fault reaction ramp, the limiting characteristic is shifted towards higher speeds in the operating mode "fault reaction active" at higher DC link voltage.

If in co61 torque lim mode bit 12 Uic dep. torque curve options is set to "1: at usage of fault reaction ramp" this setting will also be valid if the fault reaction ramp is used.

6.2.9.5 Adjustment of the torque limiting characteristic

Since the 1/x or $1/x^2$ run of the limiting characteristic is only approximately, the characteristic can be adjusted by ds13 torque limit curve factor.

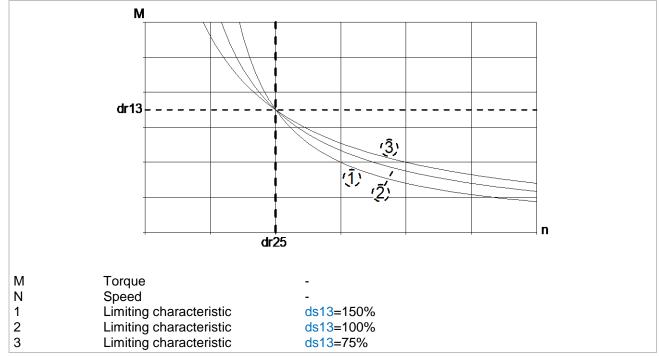


Figure 74: Adjustment of the torque limiting characteristic

6.2.9.5.1 Asynchronous motor

The physical stall torque characteristic of the motor is a squared characteristic.

The squared limit characteristic must be activated if the motor shall be used upto its limit (ds11 torque mode bit (0,1) = 1).

ds11	torque mode		0x240B		
Bit	Function	Value	Plaintext	Notes	
0 4	field weak curve	0	1/x	for SM	Adjusts itself automatically depending on
01	limit	1	1/x²	for ASM	the selected motor type

Index	Id-Text	Name	Function
0x220D	dr13	breakdown torque %	Breakdown torque at start of field weakening
0x2219	dr25	breakdown speed %	Field weakening point

The breakdown torque in % of the rated torque is entered in dr13 breakdown torque %. 100% can always be entered in dr25 for an asynchronous motor.

Example: Parameterization of dr13 and dr25 for an asynchronous motor

Rated values		Limiting characteristic		
Rated voltage	330 V	Reference-DC link voltage	565 V	
Rated fre- quency	50 Hz	Mbreakdown / Mrated	2	
Pole-pair num- ber	2			
Rated speed	1460 rpm			

Rated field weakening frequency =
$$50 Hz * \frac{565 V}{330 V * \sqrt{2}} = 60.5 Hz$$

The field weakening shall start at this frequency \Rightarrow dr25 = 100%

$$\frac{dr13}{rated\ torque}*100\% = \frac{breakdown\ torque}{rated\ torque}*100\% = 200,0\%$$

6.2.9.5.2 Synchronous motor

Theoretically, the maximum torque must decrease at sufficient high current in the d-axis according 1/x characteristic.

ds11	torque mode			0x240B	
Bit	Function	Value	Plaintext	Notes	
0 1	field weak curve	0	1/x	for SM	Adjusts itself automatically depending on the
01	limit	1	1/x ²	for ASM	selected motor type

That means ds11 bit (0,1) must be set to 0. A 1/x function is defined by specifying a single point which is passed through. This point is determined by parameters dr13 and dr25.

Index	Id-Text	Name	Function
0x220D	dr13	breakdown torque %	Torque and speed for the definition of the limiting
0x2219	dr25	breakdown speed %	characteristic

dr25 defines the speed and dr13 defines the limit characteristic (max.) torque which is appropriate to this speed.

The torque value is entered in dr13 breakdown torque % in % of the motor rated torque.

The speed value is entered in dr25 breakdown speed % in % of the rated field weakening speed . This is calculated as follows:

Rated field weakening speed
$$=\frac{rated\ speed*dr28}{dr05*\sqrt{2}}$$

Example: Parameterization of dr13 and dr25 for a synchronous motor

Rated motor values		Reference voltage	
Rated voltage	330 V	Mains / AFE voltage	400 V
Rated frequency	200 Hz	Reference-DC link voltage	565 V
Pole-pair number	6	Point of the limiting characteristic (e. voltage	.g. from data sheet) for ref.
Rated speed	2000 rpm	Torque of the limiting characteristic	350 Nm
Rated torque	150 Nm	Speed for limit torque	2000 rpm

Rated field weakening speed =
$$\frac{2000 \ rpm * 565 \ V}{330 \ V * \sqrt{2}} = 2421,3 \ rpm$$

$$dr25 = \frac{Speed~f\"{u}r~limit~torque}{Nennfeldschw\"{a}chdrehzahl}*100\% = \frac{2000~rpm}{2421.3~rpm}*100\% = 82.6\%$$

$$dr13 = \frac{limit\ torque}{rated\ torque}*100\% = \frac{350\ Nm}{150}*100\% = 233.3\%$$

If a limiting characteristic curve is specified for a motor, a safety distance should always be maintained to this curve, since all parameters have tolerances and temperature drifts.

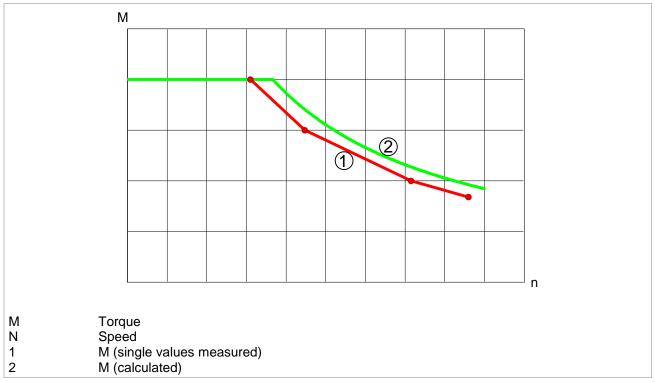


Figure 75: Safety distance to the limit characteristic

In practice, this optimal d-current can not be supplied because it is higher than the maximum current of the motor or inverter (par example), or the limiting characteristic due to saturation, iron losses or similar is not a 1/x characteristic.

Therefore the characteristic must be determined by tests in the application.

The value of dr25 should be selected lower than the measured value in order to keep a safety distance.

NOTICE

- An error in the position detection leads to the fact that a torque is generated by the magnetizing current.
- An error of 20° electrically causes an undesired torque by the magnetising current of maximum:

$$M = \sin(20^\circ) * fc05 * dr09 = 0.34 * fc05 * dr09$$

- > The drive is uncontrollable if this missing torque due to the limiting characteristic cannot be compensated by the speed controller.
- All torque limits must be selected high enough that the position error can always be compensated.

6.2.10 Flux controller (ASM)

The flux controller for the asynchronous motor is a PI controller.

The set flow (ImrRef) is made up of a characteristic value (flux control) and the output of the maximum voltage controller.

Different options for the flux controller can be selected with fc16 ASM flux mode.

fc16	ASM flux	mode			0x3710
Bit	Func- tion	Value	Plaintext	Notes	
		0	off	Flux controller off (limit = 0)	
	flux re-	1	on	Flux controller limits constant = fc20	1
0	0 gula- 1 tion	2	start off, cubic	cubic => Flux controller limit rises cubically (x³) from 0 at sp 0 to fc20 at speed dr25 (breakdown speed)	
		3	start on, cubic	start off => the flux controller is not a start on => the flux controller limit fc	•
2	wait for	0	off	on => the flux build-up is await for si (e.g. transfer of speed setpoints). The	
3	3 flux	4	on	in status "Start opertion active"	le unive remains as long as
4	re-	0	off	reserved	
4	served	8	reserved	leserveu	

Index	Id-Text	Name	Function
0x3711	fc17	ASM min. flux	Flux in % of the rated flow, when the magnetization is considered as completed
0x3712	fc18	KP flux (A/A)	Flux controller-total gain
0x3713	fc19	Tn flux	Reset time
0x3714	fc20	ASM flux reg. limit	Flux controller limit in % of the rated motor current (dr03)

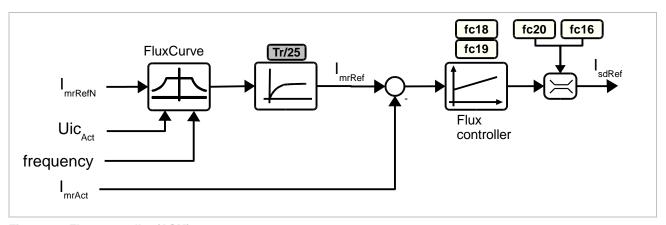


Figure 76: Flux controller (ASM)

6.2.11 Adaption

ds12	adaption mod	le		0x240C
Bit	Function	Value	Plaintext	Notes
		0	off	Stator resistance adaption off
	stator	1	on no storing	Adaption on, is reset when the mod-
01	resistance	I	on, no storing	ulation is removed
	resistance	2	on, storing till power off	Adaption on, is reset by power on
		3	reserved	
23	reserved	0	off	do not use
	45 Tr(ASM) / EMC (SM)	0	on, no storing	Adaption of the rotor time constant off
45		16	on, storing till power off	anno antiona ao with atatan ra
	EIVIC (SIVI)	32	reserved	same options as with stator resistance adaption
		48	on, no storing	Sistance adaption

Stator Resistance Rs:

The adaptation of the stator resistance can only be done below 20% of the rated speed, if at least 25% of the rated active current is flowing. The adaptation limits can be adapted in the structure "Rs stab./adpt. model" under ds18[2]/ds18[3].

Tr (Asm) /Emc (SM):

In order to achieve the best possible torque accuracy, in operation with encoder, an adaptation of the counter voltage (synchronous motor, Emc) or rotor time constants (asynchronous motor, Tr) is possible. This applies for both motors: Adaptation is not possible in the dynamics or leads to invalid values.

Emc (SM):

The adaptation time constants for the synchronous motor is 4 seconds, whereby only long-term effects to the Emc can be compensated, not dynamic changes, such as saturation.

Adaptation occurs above 25% of the rated speed.

Tr (ASM):

The adaption constant for the asynchronous machine is dependent on the rotor time constant.

Adaptation occurs above 50% of the rated speed in regenerative operation or 6.25% in motor operation, if at least 25% of the rated active current is flowing.

6.2.12 Saturation characteristic (SM)

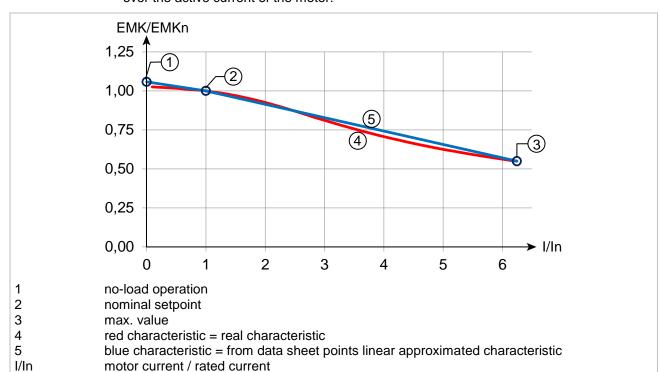
6.2.12.1 Determination of the saturation characteristic

The adaptation can only compensate slow changes (like e.g. temperature effects). If dynamic changes, such as the current-dependent saturation, shall also be taken into account, a saturation characteristic must be defined.

This is currently preset by the dr parameters:

Index	Id-Text	Name	Function
0x220E	dr14	SM EMF [Vpk/(1000min-1)]	Peak value of the linked EMF
0x2203	dr03	rated current	Rated current
0x2209	dr09	rated torque	Rated torque
0x220C	dr12	max current %	Maximum current in % rated current
0x220B	dr11	max torque %	Max. torque in % rated torque

- dr14 "SM EMF" is the EMF in no-load operation (current = 0).
- The EMF at rated current is calculated from dr03 and dr09.


EMF (at
$$I = Irated$$
) = $\frac{dr09}{dr03} * 85.5$

• The EMF at maximum current is calculated from dr12 and dr11.

$$EMF (at I = Imax) = \frac{dr11 * dr09}{dr12 * dr03} * 85.5$$

This calculation is only valid if the current-to torque data for Id=0 are specified and no field weakening current is required for reaching the maximum torque.

The saturation must only be taken into account when the motor is driven so far into saturation that, due to the strongly changed motor parameters, also the controllers must be adjusted (=> Chapter 6.2.6 Current control) or the torque accuracy shall be improved under load.

The following figure shows the characteristic of the torque constant or the EMF over the active current of the motor:

Figure 77: Torque constant depending on the active current

The inverted saturation characteristic is required to calculate the set current from the set torque. This characteristic is also calculated from the same 3 data sheet values for no-load operation, nominal setpoint and maximum value:

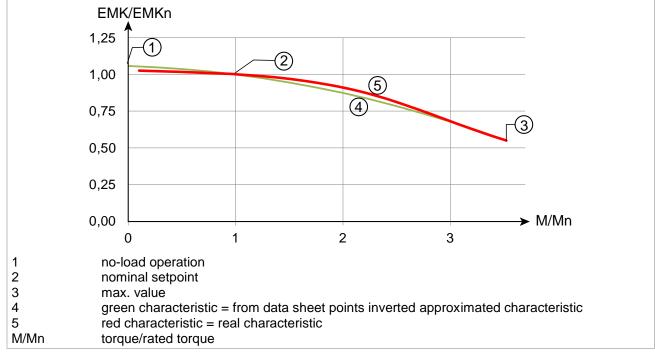


Figure 78: Torque constant depending on the torque

Since both characteristics are approximations different factors can be used at first (set current from set torque) and return calculation (actual torque from actual current).

Thus the actual torque display is not equal to the set torque display in static, steady state.

Example:

For set torque = 3-fold rated torque the calculated EMF factor is 0.678. Means, the set current is 3/0.678 = 4.42-fold rated current

For 4.42-fold rated current the factor 0.706 amounts from the picture above on the previous page.

That means: the indicated actual torque is 4.42 * 0.706 = 3.12-fold rated torque. An output set torque of 300.0% leads thereby to an actual value display of 312.0%.

Which of the two values is near to the real torque is depending on approximation characteristic that is near to the real saturation curve and can be different for each range of the characteristic.

In a later version it should be possible to store the saturation characteristic tabularly.

Since these data are rarely supplied by the motor manufacturer, currently the saturation is defined by the values for no-load operation, rated current and maximum current (indicated in the data sheet).

6.2.12.2 Effect of the saturation characteristic

Which control parameters are influenced by the saturation can be selected with mo00:

mo00	saturation mo	saturation mode			0x3800
Bit	Function	Valu e	Plaintext Notes		
			off	No change of the EMF	
01	curve source	1	dr14, dr09/dr03, dr11/dr12	Change of the EMF accord characteristic (no-load oper point, maximum point)	
01		2	saturation coef- ficients (mo01)	The saturation coefficients termined via an external too mo01.	
		3	reserved		
2	EMF	0	isq	Change of the EMF proport current	ional to the active
	depending	4	reserved		

The consideration of the saturation characteristic for the EMF and thus for torque \Rightarrow current or current \Rightarrow torque conversion is activated with bit 0,1 = 1.

Bit 2 defines the factors determining the saturation characteristic. Currently, the saturation factor is always considered as active current-dependent.

mo00	saturation mode		0x3800		
Bit	Function	Value	Plaintext	Notes	
	Lsd curve	0	EMF proportional	Ld changes according to the EMF	
34	source	8	off	no change of	Ld
		16, 24	reserved		
56		0	isq	Do not adjust for future extensions!	
56	Lsd depending	32, 64, 96	reserved		
	Lsq curve source	0	EMF proportional	Lq changes a	ccording to the EMF
78		128	off	no change of	Lq
		256, 384	reserved		
	Lsq depending	0	isq		
910		512, 1024, 1536	reserved	Do not adjust for future extension	

The consideration of the saturation characteristic for inductances is activated wit bit 3.4 = 0 or bit 7.8 = 0.

Currently the inductances can only be changed according to the saturation characteristic (EMF proportional).

Then the adapted inductance values are considered by the decoupling, the motor model and used by the torque calculation.

In order to adjust the current controller gain to the inductance change, additionally function "sat L on I control" must be activated in ds04 (=> Current control Chapter 6.2.6).

6.2.13 Cogging torque compensation (SM)

Harmonics occur at some synchronous machines and linear drives due to fluctuations of the magnetic flux. This leads to the ripple of the motor torque at constant load or no-load operation. This superimposed torque is named cogging torque or "cogging". For motors with (approximately) periodic process of the cogging torque whose compensation is possible.

Parameterization of the compensation

Maximum four sine-wave generators can be parameterized via parameters mo17 frequency factor mo18 magnitude and mo19 phase. The compensation torque is created by overlaying of the sine waves.

Index	Id-Text	Name	Function	
0x3811	14	mo17	cogg. frequency factor	Frequency of the sine-wave generator in multiples of one electrical revolution
0x3812	14	mo18	cogg. magnitude [%Mn]	Output amplitude of the sine-wave generator in % of the rated torque
0x3813	14	mo19	cogg. phase [°]	Phase shifting of the sine-wave generator in °
0x3814		mo20	cogg. fade out speed 100% [rpm]	Definition of the fading out range of the cogging function
0x3815		mo21	cogg. fade out speed 0% [rpm]	
0x3816		mo22	cogging PT1 time	PT1 time for current control loop emulation. Do not change!

COMBIVIS 6 provides an online wizard for parameterization of the compensation.

• "fade out" function:

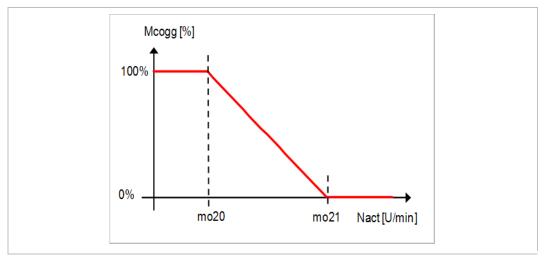


Figure 79: Cogging torque compensation

Usually the effect of the cogging torque decreases with increasing motor speed, therefore the compensation can be faded-out for high speeds.

The amplitude of the compensation torque is set from speed 0 to speed mo20 to the adjusted value in mo18.

The amplitude of the compensation torque is decreased to zero within the speed band of mo20fade out speed 100% to mo21fade out speed 0%.

6.2.14 Control mode (with encoder / encoderless)

The control mode is preset with cs00 (without control / control with encoder / encoderless speed control).

Channel A is used as speed encoder feedback in modes with encoder as standard.

The speed controller values arising from the automatic calculation by cs99, are depending on the selected speed smoothing times. These are defined for modes with encoder in the ec parameters and for encoderless operation in the ds parameters.

With the switching between the modes with and without encoder, eventually also an adjustment of the controller gain is necessary.

An automatic adjustment can be activated with bit 4: speed control mode.

cs0 0	control	mode	0x2700			
Bit	Func- tion	Value	Plaintext Notes			
	con- trol mode	0	uf-control	Voltage-/frequency characteristic		
		1	encoder, with- out model	Operation with encoder without n	notor model	
0 3		2	encoder, with model	Operation with encoder and motor	or model	
		3	no encoder (ASCL/SCL) Operation without encoder with motor model		notor model	
		415	reserved			
	speed ctrl mode	0	Kp/Tn, no adapt	The calculation of KP/Tn is done justed mode (with encoder or end The controller gain remains unch change	coderless).	
4		16	kp/Tn, adapt in- ternal	The calculation of KP/Tn always with encoder. At mode change the ternal adjusted depending on the The ratio of the smoothing times ation (ds28) and operation with eec27) should be in the range of 1	e controller gain is in- smoothing times. for encoderless oper- encoder (ec26/2 +	

6.2.14.1 Voltage frequency operation

This operation mode is intended for an easy start-up.

The v/f operation is defined by these parameters:

Index	Id-Text	Name	Function	
0x2205	dr05	rated voltage	Rated motor voltage (resolution 1V)	
0x2206	dr06	rated frequency	Rated motor frequency (resolution 0.001Hz)	
0x222D	dr45	ASM u/f boost	Standstill voltage (resolution 0.1 % rated motor voltage dr45)	
0x222E	dr46	ASM v/f V1	Point of support 1, voltage (resolution 0.1% rated motor voltage dr45)	
0x222F	dr47	ASM v/f F1	Point of support 1, frequency (resolution 0.001Hz). dr46 has no effect with ZERO.	
0x2230	dr48	v/f characteristic mode	Type of calculation of the v/f characteristic	
0x3500	is00	Uic mode	Mode DC link voltage compensation	
0x3502	is02	Uic comp voltage limit	Limit DC link voltage compensation	
0x3820	mo32	ASM v/f offset	Voltage offset (after power off = 0, resolution 0.1% rated motor voltage)	

The voltage-frequency characteristic is defined by 3 voltage /frequency pairs:

- The voltage at frequency 0 Hz is defined with dr45 ASM v/f boost.
- An additional point of support for the characteristic can be set with dr46 ASM v/f V1 and dr47 ASM v/f F1
- dr05 rated voltage and dr06 rated frequency define the rated point of the voltage frequency characteristic.

The dr48 v/f characteristic mode defines how the characteristic is calculated and which is the reference value for the percentage voltage specifications.

The DC link voltage compensation and the maximum modulation level also influence the voltage/frequency characteristic.

A superimposed control can adapt the voltage online via process data with parameter mo32. After power off/on, mo32 is zero again.

The rated motor speed (dr04 rated speed) is required to calculate the number of pole pairs. Since all setpoint specifications must be made in revolutions per minute, the required frequency is only reached if dr04 is correctly parameterized.

6.2.14.1.1 Rated point determination

dr48 v/f characteristic mode defines the type of calculation of the rated point.

dr48	v/f characteristic mode		0x2230
Value	Plaintext	Notes	
0	use type plate data	The v/f characteristic passes point dr06 rated frequency / dr05 rated voltage. dr45 ASM v/f boost, dr46 ASM v/f V1 and mo32 ASM v/f offset are values in % of the rated motor voltage dr05.	
1	use inverter rated volt- age	The v/f characteristic passes through point de30 inverter rated voltage / projected rated point frequency. dr45 ASM v/f boost, dr46 ASM v/f V1 and mo32 ASM v/f offset are values in % of the inverter rated voltage de30.	

The value dr48 determines the definition of the rated point (third point of the v/f characteristic curve).

This point is directly defined at value 0 "use type plate data" by dr06 rated frequency and dr05 rated voltage.

f (rated point) = dr06 rated frequency

U (rated point) = dr05 rated voltage

If dr48 is 1 "use inverter rated voltage", the third point is calculated from the inverter rated voltage (de30 inverter rated voltage) and the motor data dr06 rated frequency and dr05 rated voltage:

f (rated point = de30 inverter rated voltage / dr05 rated voltage * dr06 rated frequency

U (rated point) = de30 inverter rated voltage

The reference value of the percentage voltage settings dr45, dr46 and mo32 is at value 1 the rated inverter voltage instead the rated motor voltage.

6.2.14.1.2 0 Hz voltage

The voltage at frequency 0 Hz is defined with dr45 ASM v/f boost.

6.2.14.1.3 Additional point of support

The voltage of the v/f characteristic increases linearly with the frequency. Two ranges with different voltage rise can be defined by using dr47 ASM v/f F1 and dr46 ASM v/f V1. If the additional point of support shall not be used, dr47 must be set to zero. Then parameter dr46 has no function.

6.2.14.1.4 DC link voltage compensation

The DC link voltage compensation is activated with "Uic compensation mode" = 2 or 3. Means, as long as the voltage is supplied, the output voltage depends only on the programmed characteristic (not from the current DC link voltage).

is00	Uic mode				0x3500
Bit	Function	Value Plaintext		Notes	
	Uic compensation mode	0	off	-#	
		1	off, only curr decoupling	off	
02		2	on	on	
		3	on, voltage limited	on / with voltage limitation	
		47	reserved		

If the DC link voltage compensation is switched off, the output voltage changes with the DC link voltage. The calculation of the characteristic is based on the inverter rated data. The deviation of the DC link voltage from the inverter rated voltage has directly influence to the output voltage.

is02	Uic comp voltage limit 0x3502		
Value	Meaning		
200V800V	Maximum output voltage (effective value)		

With is00 Uic mode = "3: on, voltage limited", the output voltage is limited at is02 voltage limit.

6.2.14.1.5 Maximum modulation grade fc04

Index	Id-Text	Name	Function
0x3704	fc04	max. modulation grade	Adjustment of max. permitted modulation grade.

A modulation factor of 100% means, that the amplitude of the motor voltage (phase-phase voltage) is equal to the DC link voltage.

The effective value of the motor voltage can be increased over 100%. The output voltage then deviates from the sinusoidal form.

6.2.14.1.6 Online adaptation of the characteristic

With the exception of mo32 ASM v/f offset, all parameters for defining the v/f characteristic are part of the dr parameter group. They must always be confirmed with dr99 motordata control und cannot be changed via process data.

If an online adaptation of the v/f characteristic is necessary, the control can additionally adapt the voltage via process data via parameter mo32.

Parameter mo32 ASM v/f offset is directly added to the value of the v/f characteristic. mo32 is not saved. After power off/on, the value of mo32 is zero again.

v/f operation example of an asynchronous machine:

Unless otherwise specified, the following settings apply:

Rated voltage: dr05 rated voltage = 330V

Rated frequency: dr06 rated frequency = 50 Hz

Boost: dr45 ASM v/f boost = 5%Point of support V1 dr46 ASM v/f V1 = 50%

Point of support F1 $\frac{dr47 \text{ ASM v/f F1}}{}$ = 15 Hz

DC link voltage is00 compensation mode = 2 compensation is02 Uic comp voltage limit = 400V

Maximum modulation grade fc04 max. modulation grade = 100%

DC link voltage: ru14 act. Uic voltage = 620 V

6.2.14.1.6.1 Influence of the additional point of support

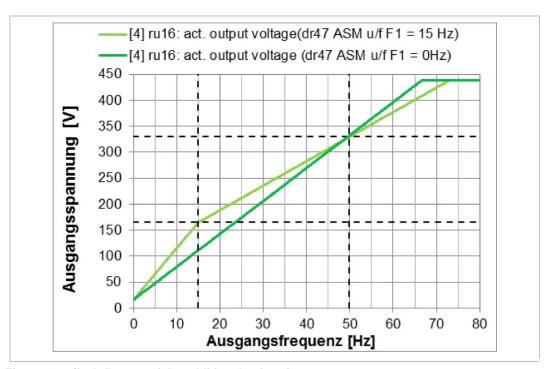


Figure 80: v/f – Influence of the additional point of support

6.2.14.1.6.2 Influence of the DC link voltage compensation

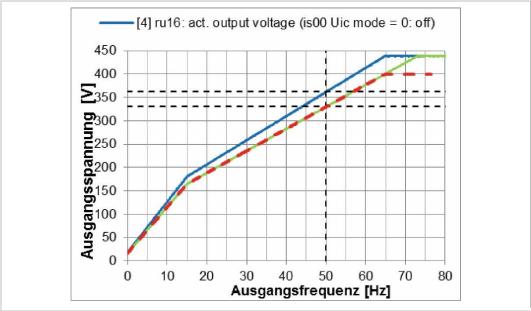


Figure 81: v/f - Influence of the DC link voltage compensation

All voltage values of the blue characteristic are increased compared to the characteristic with DC link voltage compensation by the factor real DC link voltage to rated DC link voltage: ru14 Uic voltage / rated DC link voltage = 620V / 565V = 1.1 Voltage at 50Hz in graphic: 362V to 330V = 1.1

6.2.14.1.6.3 Influence of the maximum degree of modulation

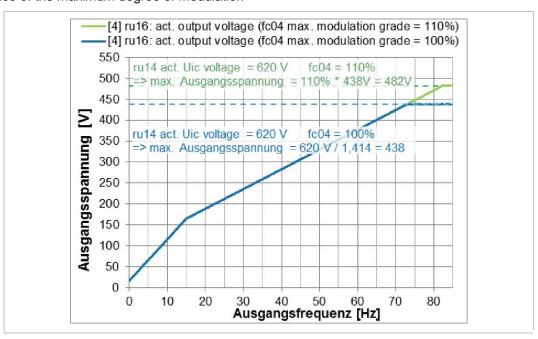


Figure 82: v/f – Influence of the maximum degree of modulation

6.2.14.1.6.4 Influence of dr48 v/f characteristic mode

Boost: dr45 ASM v/f boost = 20%

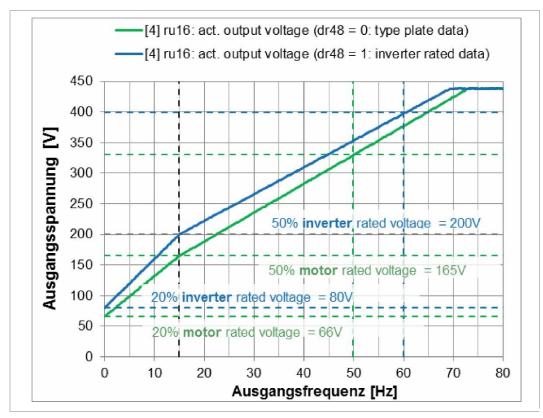


Figure 83: v/f - Influence of dr48 v/f characteristic mode

6.2.14.2 Operation with encoder without motor model

This operating mode has almost no validity.

The possibility to activate the EMF adaptation or to operate on model currents is missing at the synchronous machine in this mode.

The slip is determined from the equivalent circuit data (not from the rated speed) at the asynchronous machine in this mode. That means, identification of the motor data is mandatory.

Additional possibilities, like Tr-adaption or driving on model currents can not be activated in this mode.

6.2.14.3 Operation with encoder with motor model

This is the operating mode for speed-controlled operation with encoder.

Advantages at operation with model:

- The flux at the asynchronous machine is adapted by the model.
- The adaption of EMF or rotor time constant is possible. This increases the torque accuracy.
- Driving on model currents (ds04 bit 07) is possible, advantageous at output frequencies > 400Hz.

6.2.14.4 Operation without encoder with motor model

The type of model control is important in this mode (=> Chapter 6.2.15 Model control (ASM and SM)).

The model cannot be operated stable at low output frequencies. Make sure that this range is quickly passed.

A degree of freedom for the asynchronous motor is speed, i.e. it can differ from the estimated speed. The torque accuracy is given.

Overview of the functions which can be activated dependent on the operating mode and motor:

	cs00 c	ontrol mode					
	0 (v/f)	1 encoder/ no model	2 encoder/ with model	3 SCL / ASCL	Activation	ASM	SM
emf adaption	-	-	х	Х	ds12 bit 4-5	-	Х
Tr adaption	-	-	х	-	ds12 bit 4-5	х	
current offset adaption	-	-	Х	х	ds12 bit 2-3	х	Х
estimated current control	-	-	Х	Х	ds04 bit 6	х	Х
stabilisation current	-	-	-	х	ds30 bit 0	-	Х
stabilisation term	-	-	=	х	ds30 bit 1	-	Х
deviation	-	-	Х	х	ds04 bit 6	х	Х
observer	-	-	Х	х	ds04 bit 7	Х	х

6.2.15 Model control (ASM and SM)

In which speed ranges the model should be active is adjusted with this parameter in operating modes with motor model.

6.2.15.1 Model deactivation

ds41	model ctrl			0x2429	
Bit	Function	Value	Plaintext	Notes	
		0	dep. on ref/act speed	Model deactivation in encoderless	
02	02 model (A)SCL	1	always on	operation	
		2	dep. on act speed	operation	
		37	reserved		
	model with	0	dep. on ref/act speed	Madel deactivation in approximation with	
35	35 model with	8	always on	Model deactivation in operation with	
	encoder		dep. on act. speed	speed encoder	
			reserved		
67	reserved		reserved		
		0	(A)ViCL	(Asynchron) Vektore Current Close Loop. Current-controlled operation, operates with precontrol of the torque	
89	89 low speed ctrl (A)SCL		ASiCL	Asynchron Single Current Close Loop This operating mode is designed for stable concentricity at low speeds and motor operation. The error in the stator resistance is important for the stability of the operation, by way there are deviations from the real speed under load.	
		512768	reserved		

6.2.15.1.1 Model deactivation level / time

The model deactivation can be adjusted via parameters ds42 to ds47. There are different reference values for parameters ds46 and ds47 for the output frequency (speed) at the asynchronous machine and synchronous machine.

Index	Id-Text	Name	Function
0x242A	ds42	model ctrl. ref. speed time	Time, the speed setpoint must be set to 0 or the actual
0x242B	ds43	model ctrl. act. speed time	speed value below the "speed level" (ds46), until the switch off occurs. These times have no influence in the "dep. on act speed" mode (ds42)
0x242E	ds46	model ctrl. act. speed level	Level of the actual speed value for model deactivation
0x242F	ds47	model ctrl. act. speed hyst.	(ds46) and hysteresis of the switch-off threshold (ds47) in %
0x2430	ds48	model ctrl min acc/dec [s^2]	The current deceleration/acceleration is calculated from the actual speed before the transition into the "low speed control" range, which sets the actual value to the setpoint. The minimum acceleration / deceleration is parameterized in this parameter.

The reference value for speed levels and hystereses for model deactivation are dependent on the motor type:

Synchronous machine: 100% = 7.5% * rated frequency

Asynchronous machine: 100% = 2 * rated slip frequency

rated slip speed (ns) =
$$\frac{dr06 \text{ (rated frequency * 60)}}{number \text{ of pole pairs}} - dr04 \text{ (rated speed)}$$

Example:

Asynchronous machine

(rated frequency = 50Hz, rated speed = 1450 rpm, pole-pair number = 2)

ds46 = 100%, ds47 = 20% (default values)

$$ns = \frac{50Hz * 60}{ppz} - 1450 = 50 rpm$$

Model deactivation threshold: = rated slip speed * 2 * ds46 model ctrl. act. speed level = 100 rpm

Hysterese = rated slip speed * 2 * ds47 model ctrl. act. speed hyst = 20 rpm

Model activation threshold: = Model deactivation threshold + hysterese = 100 rpm + 20 rpm = 120 rpm

6.2.15.1.2 Model on/off ds41 (Bit 0...2) and (Bit 3...5) = "dep. on ref./act. speed"

The **model activation** is a function of the setpoint speed. The model is switched on immediately with **setpoint unequal zero** (independent of the setting in ds42).

The **model deactivation** occurs if the **setpoint = zero** for the time in ds42 model ctrl. ref. speed time and for the time in ds43 model ctrl. act. speed time the actual value is below the switch-off threshold.

With deactivation of the model in encoderless operation ((A)SCL) it is switchted to the model replacement ("low speed ctrl" ds41 Bit 6...7).

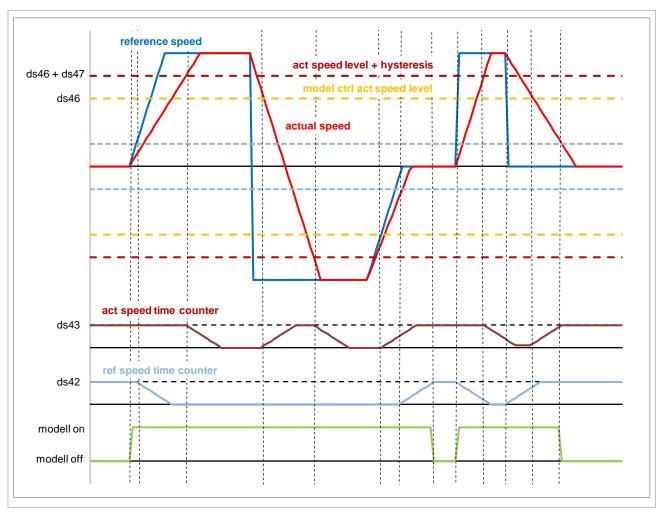


Figure 84: Model deactivation depending on the motor type

6.2.15.1.3 Model deactivation (bit0...2) and (bit3...5) = always on

The model is active after magnetisation and remains, independent of the set / actual speed.

6.2.15.1.4 Model deactivation ds41 (Bit 0...2) and (Bit 3...5) = "dep. on act. speed"

The **model activation** occurs if the actual value is above the model activation threshold

(= model deactivation threshold ds46 hysterese ds47).

The **model deactivation** occurs when the actual value is below the model deactivation threshold (ds46).

With deactivation of the model in encoderless operation ((A)SCL) it is switchted to the model replacement ("low speed ctrl" ds41 Bit 8…9).

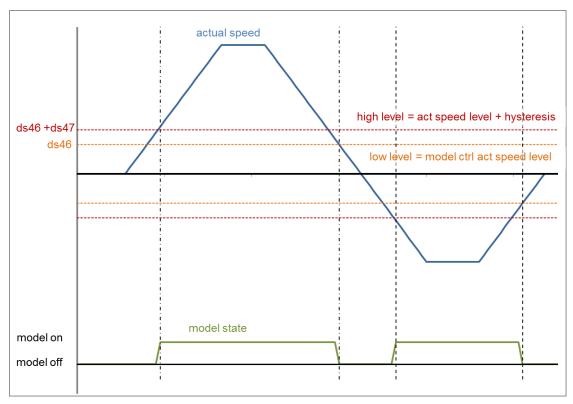


Figure 85: Model deactivation depending on the motor type

6.2.15.1.5 Model replacement ("low speed ctrl" ds41 (Bit 8...9) = (A)ViCL)

The following structure figure describes the asynchronous machine. With the synchronous machine, the slip calculation and the flux controller are omitted.

The actual value (NAct) is set with a transition function (=> description ds48 model ctrl min. acc/dec [s²]) to the setpoint (NRef).

A torque jump on the shaft is to be expected during activation/deactivation of model operation.

The PI component of the speed controller is stopped when the model is switched off until the actual value has reached the setpoint and the state constant run (in 10 ms grid) is detected. Then the PI component is set to ZERO.

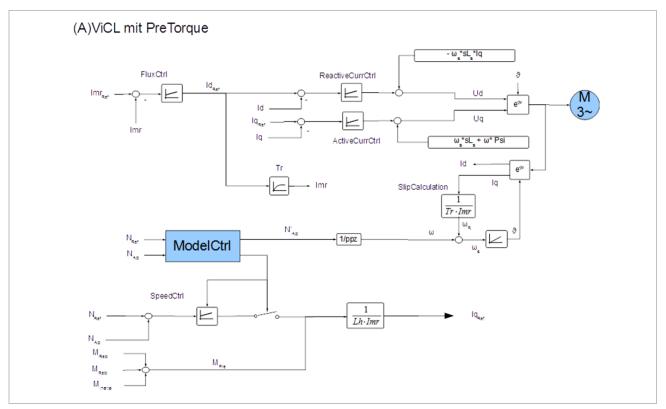


Figure 86: Model deactivation depending on the motor type

6.2.15.1.6 Model replacement ("low speed ctrl" ds41 (Bit 8...9) = ASiCL), only for asynchronous machine

The ASiCL mode is based on the equivalent circuit data (Lh,Rs,Rr,sLs,sLr), which are also required for model operation.

The settings for the speed controller and the torque limits from closed-loop operation have no effect. The current limits are active. The actual torque is calculated, but only serves as a guide value.

This operating mode is designed for stable concentricity at low speeds and motor operation.

Applications such as lifting/lowering are not possible, since regenerative operation is only reliably detected from approx. 5% of the rated speed.

The error in the stator resistance is important for the stability of the operation, by way there are deviations from the real speed under load at low speeds.

The setpoint speed serves as precontrol. Therefore the ramp times must be adapted to the mass moment of inertia and the possible currents. If this mode is used as bridging to model operation, this must be taken into account. This means that acceleration at the torque limit is not possible!

The magnetizing current setpoint is calculated identically to the closed-loop operation and is controlled by a current controller in the d-axis. The active current adjusts itself automatically, thus "boost and slip" is set.

Index	Subidx	Id-Text	Name	Function
	0		ASiCL ctrl. mode	
	1 ASiCL curr ctrl lsqPt1 Filter time (Pt1 element) for		Filter time (Pt1 element) for smoothing the active current during voltage generation	
	2		ASiCL slip calculation IsqPt1	Filter time (Pt1 element) for smoothing the active current during slip calculation
0x243F	3	ds63	ASiCL curr.ctrl. delay at zero	Switch-off time of the slip compensation on reaching setpoint speed ZERO (60000 = always active). Also fading time to enable soft switching on at start after magnetization.
	4		ASiCL Rs model stabilisation mode	Selection of the Rs adaptation mode for model stabilisation
	5		ASiCL Rs adaption high limit	upper limit (regenerative operation), default value 120%
	6	ASiCL Rs adaption low limit	lower limit (motor operation), default value 80%	
	7		ASiCL Rs adaption factor	Factor for the Rs adaption, default value 80%

ds63 [[4]	ASiCL	ASiCL Rs model stabilisation mode 0x243F [4		0x243F [4]
Bit	Function	Value	Plaintext	Notes	
		0	off	Stator resistance adaption from	
	stator	1	stabilisa- tion mot/gen	Depending on the operating condition, the set motor-driven to the lower limit (ds63[6 low limit) and regenerative to the higher listab./adpt. high limit ASiCL Rs adaption h] ASiCL Rs adaption mit (ds63[5] Rs
02	re-	2	stabilisa- tion ACC/DEC	ACC => motor => lower limit	
		3	constant factor (ds63[7])	The stator resistance adaption is done with a constant factor (ds63 [7] ASiCL Rs adaption factor). Only useful for applications in which the drive is motor or generator driven only.	

Parameterization depending on the operation:

pure motor operation					
Parameter	Name	Value			
ds63[1]	ASiCL curr. ctrl lsqPt1	3*Tr			
ds63[2]	ASiCL slip calculation IsqPt1	3*Tr			
ds63[3]	ASiCL curr.ctrl. delay at zero	Tr/20			
ds63[4]	ASiCL Rs stab. mode	constant factor (ds63[7])			
ds63[7]	Rs stabilisation factor	80%			

motor and regenerative operation					
Parameter	Name	Value			
ds63[1]	ASiCL curr. ctrl lsqPt1	3*Tr/503*Tr/10			
ds63[2]	ASiCL slip calculation IsqPt1	3*Tr			
ds63[3]	ASiCL curr.ctrl. delay at zero	Tr/20			
ds63[4]	ASiCL Rs stab. mode	stabilisation mot/gen			
ds63[5]	ASiCL Rs stab. high limit	120%			
Ds63[6]	ASiCL Rs stab. Low limit	80%			

The rotor time constant (Tr in [ms]) is calculated from:

$$Tr = \frac{Lh + sLr}{Rr}$$

$$Lh = dr19$$

$$sLr = dr21 * \frac{dr22}{100\%}$$

$$Rr = dr17 * \frac{dr18}{100\%}$$

Note:

The inertia and dynamics of the load change are also taken into account in the design, thus parameterization, here only dependent on the rotor time constant, can only serve as a guide value.

6.2.15.2 Limits for estimate speed controller

ds41	model ctrl		0x2429		
Bit	Function	Value	Plaintext	Notes	
	estimated	0	free	No limitation	of the estimated
6	speed limit	64	depending on reference	Limitation	speed

6.2.15.2.1 Free

In this mode there is no estimated speed limit. Mandatory for the operation in torque limitation, if the drive is pulled in inverse direction to the target speed.

6.2.15.2.2 depending on reference:

The limits are preset depending on the set speed. Useful to avoid an estimation fault in negative direction and thus a turn into the "blocked direction" at start from standstill e.g. with positive set speed. \Box

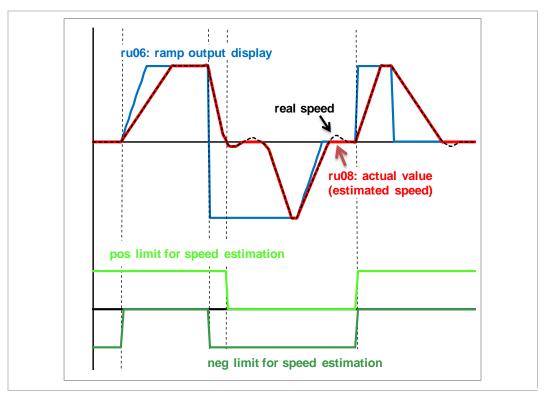


Figure 87: Torque limit depending on the setpoint value

The estimated speed is idealized displayed, in reality there can be more deviations between real and estimated (calculated) speed.

6.2.15.3 Model stabilization

6.2.15.3.1 Stabilisation current / standstill current (only SCL)

The stabilisation current stabilises the model at lower speeds. Only active for operation without encoder.

It is reduced to zero in the speed range of ds36 to ds37.

Note for synchronous reluctance motor: From version V2.9, ds35 also serves as stabilisation current for the synchronous reluctance motors. Parameters ds36 and ds37 have no effect. The stabilisation current is permanently necessary, independent of the speed.

ds30	SCL model mode			0x241E	
Bit	Function	Value	Plaintext	Notes	
0	stabilisation cur-	0	off Activates / deactivates the stabilisation cur		stabilisation current in en-
0	rent	1	on	coderless operation (SCL)	

The stabilisation current characteristic is parameterized with ds35...ds37.

Index	Id-Text	Name	Function
0x2423	ds35	scl stabilisation current	Stabilisation current in % of the rated motor current. Only for the synchronous machine it can be useful to specify a negative stabilisation current.
0x2424	ds36	min. speed for stab. current	Speed limits (in % rated motor speed), which lowering the stabilisation current to 0 (value programmed in
0x2425	ds37	max. speed for stab. current	ds35)

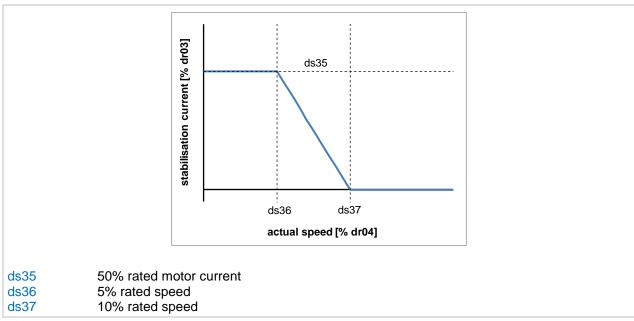


Figure 88: Stabilisation current depending on speed

Standstill current

Index	Id-Text	Name	Function
0x2426	ds38	scl standstill current	

The standstill current (ds38 default value 100%) is impressed when the model deactivation is made.

The switch on/off occurs with a ramp time, which is calculated from the double motor time constant (T = 2 * Ld / Rs).

6.2.15.3.2 Model stabilization term (SCL only)

The model stabilisation term stabilises the model at lower speeds. Only active for operation without encoder.

ds30	SCL model mode	0x241E		
Bit	Function	Value	Plaintext	Notes
1	madal atab tarm		off	Activates / deactivates the model stabilisa-
1	model stab. term	4	on	tion term

Index	Id-Text	Name	Function	
0x2420	ds32	scl stab term speed	Speed limit (in % rated motor speed), when the influence of the stabilisation term is reduced to 0.	
0x2421	ds33	scl stab term time	Time constant of the stabilisation term !!! do not adjust!	

The influence of the model stabilisation term is reduced by ds32 to 2 * ds32 to 0.

The term time (ds33) is calculated from the motor data and should not be changed.

Figure 89: Model stabilisation term depending on motor speed

6.2.15.3.3 Model stabilisation by the stator resistance

In motor operation, the model is stable if the parameterized stator resistance is lower than the real resistance in the motor.

In regenerative operation, the model is stable if the parameterized stator resistance is higher than the real resistance in the motor.

The lower the output frequency, the greater the influence of the stator resistance. Thus, this function works to stabilize the motor model at low speeds (<30%Nn). Very important in regenerative operation, at high load (>50%Mn).

Index	Subidx	Id-Text	Name	Function
	0		Rs model stabilisation	
-	1		Rs model stabilisation mode	Selection of the Rs adaptation mode for model stabilisation
0x2412	0x2412 2 ds18 Rs adap	Rs adaption high limit	upper limit (regenerative operation), default value 140%	
	3		Rs adaption low limit	lower limit (motor operation), default value 80%
	4		Rs adaption factor	Factor for the Rs adaption Default value 80%

ds18 [[1]	Rs stat	o. model mode	Э	0x2412[1]
Bit	Function	Value	ue Plaintext Notes		
	0		off	Stator resistance adaption from	
	stator re- sistance mode	1	stabilisa- tion mot/gen	The stator resistance is set motor-driven into the (ds18[3] Rs adaption low limit) and into the upper Rs adaption high limit) by regeneration, dependenting condition. NOTICE! This setting is only suitable for the stiff the speed estimation ds41model ctrl is limited mated speed limit = "64: depending on reference."	per limit (ds18[2] ding on the op- art with (A)SCL d with bit 6 esti-
02		2	stabilisa- tion ACC/DEC	The stator resistance is set into the limits deperamp status. ACC => motor => lower limit CONST => motor => lower limit DEC => regenerative => upper limit	ending on the
		3	constant factor (ds18[4])	The stator resistance adaption is done with a c (ds18[4] Rs adaption factor). Only useful for a which the drive is motor or generator driven or	oplications in

The settings in ds12 adaption mode for the stator resistance have priority

6.2.15.4 Motor model selection

ds30	SCL model mode 0x241E				
Bit	Func-	Value	Plaintext	Notes	
	tion				
2	model	0	Highspeed*	Default, required for operation at output frequencies > 400 Hz.	
2	modei	4	Ld not* equal Lq	Only mandatory for a reluctance machine.	

^{*)} Influence on the setting of the optimum current setting in tables mo04,mo05

6.2.16 DC link voltage compensation

The current controller is pre-controlled by the DC link voltage compensation. The output voltage can be limited to a max. value.

The influence of the DC link voltage compensation in open-loop operation is described in the chapter 6.2.14.1 Voltage frequency operation.

is00	Uic mode	ic mode 0x3500			
Bit	Function	Value	Plaintext Notes		
		0	off	No DC link voltage compensation	
	02 Uic compensation mode	1	off, only curr, de- coupling	No compensation for the current control, but for the decoupling (=> 6.2.7.4 Decoupling)	
02		2	on	completely compensation	
		3	on, voltage lim- ited	Compensation and limitation of the maximum output voltage	
		47	reserved		
23	Uic filter	0	off	Activation of the DT1 filter	
23	Z3 Old liller		on	Activation of the PT1 filter	

If the DC link voltage can oscillate due to the application, it can be smoothed by a PT1 filter. Thus, a resonance can be avoided.

is01	Uic PT1 time 0x3501		
Value	Meaning		
0.06360 ms	PT1 time for DC link voltage filtering		

The DC link voltage compensation is activated with "Uic compensation mode" = 2 or 3. That means, changes in the DC link voltage have no effect on the behavior of the current control.

The maximum output voltage of the current controller is limited in mode 3 to the value of is02.

is02	Uic comp voltage limit 0x3502		
Value	Meaning		
200V800V	Maximum output voltage (effective value)		

6.2.17 Identification

6.2.17.1 Function

Motor parameters, which are not specified on the type plate or in the data sheet can be determined with the identification.

The dead-time characteristic of the inverter can be determined additionally.

Condition for starting the identification is the correct input of the motor type and rated current, rated voltage, rated speed and rated frequency.

Presettings for the controller and limitations for the test signals are determined from this data.

Also the encoder parameters (type, increments, etc.) must be preset at speed control with encoder.

The identification determines the following motor data:

Asynchronous machine

Index	Id-Text	Name	Function	
0x2211	dr17	stator resistance UV	Stator resistance in Ohm	
0x2212	dr18	ASM rotor resist. UV %	Rotor resistance in % of the stator resistance	
0x2213	dr19	ASM head inductance UV	Head inductance	
0x2215	dr21	ASM sigma stator ind. UV	Stator leakage inductance in mH	
0x2216	dr22	ASM sigma rotor ind. %	Rotor leakage inductance in % of the stator value	

Synchronous machine

Index	Id-Text	Name	Function	
0x220E	dr14	SM EMF [Vpk/(1000min-	EMC (peak value of the phase-to-phase voltage) at	
UXZZUE	UI 14	1)]	1000 rpm in V	
0x220F	dr15	SM inductance q-axis UV	Cross inductance (inductance q-axis) in mH	
0x2210	dr16	SM inductance d-axis %	Series inductance (inductance d-axis) in % of dr15.	
0x2211	dr17	stator resistance UV	Stator resistance in Ohm	

Inverter

Index	Id-Text	Name	Function
0x3506	is06	deadtime coeff	Deadtime characteristic

Either all or only single motor parameters can be identified.

The automatic mode (mode 1 or 2 "all") is the simplest method of parameter identification.

Single identifications should not be used for the first measurement of the motor parameters, since wrong measurement results can occur with wrong identification order or missing of single points.

The single identification can always be used if a complete automatic measurement has been executed and only single parameters should be identified new. This can be a resistance measurement (e.g.) in operating temperature or a new measurement of the main inductance after changing the parameter dr08 magnetising current.

The measurement of most parameters occurs in standstill. Movement or rotation of the motor by the test signals is possible.

Only the head inductance (at asynchronous machine) or EMF (at synchronous machine) must be identified at higher speed. The speed is determined by parameter dr44.

NOTICE

The following applies to the safety module type 5 for control type P: While the motor identification is being carried out, encoderless speed detection activated in the safety module can lead to error trigering of the safety module and switching off the modulation release.

For motor identification, deactivate the encoderless speed detection on the safety module.

dr54 Bit 0...3 ("mode") determines which identification shall be executed:

dr54	ident				0x2236	
Bit	Function	Value	Plaintext	Notes	Notes	
		0	off			
				! Attention: requires moto tion !	r rotation in no-load opera-	
		1	all (with movement)	automatic measurement of t and all equivalent circuit dat or the EMF. The motor acce	a- also the head inductance	
	3		all (without move- ment)	inductance or EMF.	a- with the exception of head a standstill, but rotation of the	
			stator resistance (Rs)	Measurement of the stator re	esistance	
03	mode	mode 4	SM inductance (di/dt)	Measurement of the inducta with the "five-step" procedur	nce of a synchronous motor	
		5	dead time	Measurement of dead time of switching frequencies	characteristic for all available	
		6	ASM rotor resistance (Rr)	Measurement of the rotor retor)	sistance (asynchronous mo-	
		7	ASM sigma ind./SM ind. (ampl.Mod)		nce of a synchronous motor f an asynchronous motor with procedure	
		8	ASM head inductance	Measurement of the head in tor)	ductance (asynchronous mo-	
	9 5		SM EMF	Measurement of the EMF (s	ynchronous motor)	
		1015	reserved			

The procedure for the inductance measurement of a synchronous motor within a complete identification can be selected in bit 4 and 5.

dr54	ident				0x2236	
Bit	Func- tion	Value	Plaintext	Notes		
		0	amplitude modula- tion	Using the "amplitude-modulation" procedure		
	SM ind.	16	di/dt (five step)	Using the "five-step" pr	rocedure	
45	mode for all	for all		Estimation of Ls with the measurement of the st	ne "five-Step" method. Then ator resistance Rs.	
	ident		auto select	Depending on the moto procedure for this moto	or time constant, the optimal or is selected:	
				Time constant < 10ms ulation" method.	=> Use of the "amplitude mod-	

The process of the identification can be monitored in dr55.

dr55	ident state		0x2237
Value	Name	Note	
0	off		
1	stator resistance	Measurement of the stator resist	tance
2	SM inductance (five step)	Inductance measurement accord procedure running	ding to the "five-step"
3	dead time	Measurement of the dead time of	characteristic running
4	init current ctrl (only Ls identified)	Current controller-initialisation fo	or the following identifi-
5	init current ctrl (with identified values)	cation steps	
6	rotor resistance (ASM)	rotor resistance (ASM) Measurement of the stator resistance	
7	not defined		
8	wait bg norm	Internal standardization routines	are pass through
9	ASM sigma ind./ SM ind. (ampl.modl)	Inductance measurement accord modulation" procedure running	ding to the "amplitude-
10	head inductance (ASM)	Head inductance measurement	running
11	EMF (SM)	Measurement of the EMF running	ng
12	error	The identification was aborted w	rith error
13	ident ctrl nop	Internal interim status	
14	ready	The identification has been comp	pleted
15	wait state	Internal interim status	
17	rotor detection (cvv)	Rotor position identification acco	ording to "constant volt-
18	rotor detection (hf detection)	age vector", "hf detection" or "fiv	e-step" procedure run-
19	rotor detection (five step)	ning (=> see Chapter 6.2.3.5 Sys	stem offset)

6.2.17.2 Stator resistance dr17

Basically valid for the operation at low output frequency, the model is stabilized motor-driven with too small stator resistance and regenerative with too high resistance. If the identification of the dead time is made to a resistance which is adjusted too low/high, the preset error factor compensates itself again.

6.2.17.3 ASM rotor resistance dr18

The rotor resistance changes with the temperature. To what extent also the rotor time constant is changed and therefore the effect on the slip (e.g.) is dependent on the construction of the motor.

6.2.17.4 ASM main inductance dr19

The main inductance dr19 can only be determined if the motor can rotate freely.

Identification is also possible with a load torque as long as the rump-up to identification speed dr44 is possible with this torque.

The speed setpoint is determined via dr44 (default value 65% of the rated speed). The acceleration / deceleration ramp is defined by co48...co60.

A start value for the head inductance is calculated with the selection in dr54 "mode" = 1 or 2 (after writing on dr99). The head inductance is real identified with "mode" = 1

Calculation of the start value from:

- dr03 rated motor current
- dr09 rated torque
- dr07 ASM rated cos(phi)
- Pole-pair number of the motor (integer (rated frequency * 60 / rated speed))

The calculation occurs according to the following formula:

rated active current = rated motor current * $(1 - (1 - \cos(phi) * 0.64))$

$$Imr = \sqrt{rated\ motor\ current^2 - rated\ active\ current^2}$$

Start value of the head inductance

$$= \frac{rated\ torque}{(Imr*rated\ active\ current*number\ of\ pole\ pairs)}*{(\frac{2}{3})}$$

If the motor does not rotate during the identification, although the load torque is smaller than the rated torque, the start value for the head inductance was eventually calculated too high. Then the value in dr19 must be reduced and the identification must be started again with the single measurement (dr54=8). Also an incorrectly set speed controller or too slow ramp times for the ramp-up can lead to errors in the identification of the main inductance.

6.2.17.5 EMF Identification

The counter voltage EMF (dr14) of the motor can only be determined if the motor can rotate freely.

Identification is also possible with a load torque as long as the rump-up to identification speed dr44 is possible with this torque. When identifying the EMF with load, however, the determined EMF can no longer be used to define the saturation characteristic.

The speed setpoint is determined via dr44 (default value 65% of the rated speed). The ramps are determined in co48...co60. Too slow ramps can make the ramp-up difficult in unidentified state. If error message 61 "Emf / Lh, speed <> ref" (= identification speed not reached) is displayed in dr57 ident error info, the acceleration should be increased or the speed controller setting should be adjusted.

A start value for the EMF of the motor data is calculated with the selection mode = 1 or 2 in dr54 (after writing on dr99).

Then the EMF is real identified with mode = 1 in dr54.

Calculation of the start value:

given: rated motor current (dr03) rated torque (dr09)

calculated: Start value of the EMF ($dr14 = \frac{rated\ motor\ torque}{rated\ motor\ current} * 85.05$

Parameter dr14 has only effect when the saturation characteristic mo00 saturation mode is activated or source in ds11 torque mode is set to 16 = EMF.

6.2.17.6 SM inductance

The inductance of the synchronous motor can be determined over two procedures. If value 32 = "auto select" is selected in dr54 at SM ind. mode for all ident, the "five step" procedure is executed first. If this determines a time constant < 10ms, the result is considered as insufficient reliable and the inductance is identified according to the "amplitude modulation" procedure. The inductance of the asynchronous motor is always performed by the amplitude modulation procedure.

a) "five step" – procedure (dr54 = 4)

Five different voltage vectors are given to the motor within a view ms. The current level to be reached can be preset via parameter dd02.

The default value of 100% can be kept for the determination of the inductance. The voltage rate is determined by test jumps.

b) "Amplitude modulation" procedure (dr54 = 7)

Here a test sinus signal is given to the motor.

The test frequency starts with 500 Hz (125 Hz for asynchronous motor). If the current level for the identification (selectable in dr56) should not be reached with this frequency, it is reduced by half. Significant noise development is to be expected on some motors due to the test signal. Here the current level dr56 should be reduced to 20% (e.g.).

6.2.17.7 Deadtime characteristic

The identification of the deadtime characteristic should be done after identification of the stator resistance, in order that the stator winding has the same temperature and thus the same resistance.

A table is filled by the identification, wherein the compensation values for 4 and 8 kHz depending on the current are stored.

The measured values can be read out with parameters is05 deadtime index and is06 deadtime coeff.

6.2.17.8 Possible error messages

If the identification is interrupted, the cause of the error can be read in parameter dr57 ident error info.

dr57	ident e	rror info 0x2239	
Identification step	Value	Note	
	11	Rotor resistance out of range	
	13	Current limit is reached, no lower frequency possible but phase	
ASM rotor resistance (Rr)	13	shifting not within permissible range	
	14	Voltage limit is reached, not current limit, phase angle not in per-	
	14	missible range, no lower frequency possible	
	21	Ld out of range (lower limit)	
		Amplitude modulation procedure:	
	23	Current limit is reached, no lower frequency possible but phase	
		shifting not within permissible range	
		Amplitude modulation procedure:	
	24	Voltage limit is reached, not current limit, phase angle not in per-	
SM inductance (Lsd/Lsq)		missible range, no lower frequency possible	
	28	Lq out of range (upper limit)	
	29	Lq out of range (lower limit)	
	32	five step procedure: Current not reached	
	00	five step procedure:	
	33	found no voltage, that the current can be reached within specified	
	41	time limits Leakage inductance out of range (upper limit)	
	42		
ASM leakage inductance		Leakage inductance out of range (lower limit) Current limit is reached, no lower frequency possible but phase	
(sLs)	43	shifting not within permissible range	
(020)		Voltage limit is reached, not current limit, phase angle not in per-	
	44	missible range, no lower frequency possible	
	51	Head inductance out of range (upper limit)	
ASM main inductance (Lh)	52	Head inductance out of range (lower limit)	
,	61	Identification speed not reached (oscillation or limitation)	
	55	EMF out of range (upper limit)	
SM counter voltage (Emf)	56	EMF out of range (lower limit)	
3 ()	61	Identification speed not reached (oscillation or limitation)	
	72	Current actual value unequal current set value	
Stator resistance (Rs)	73	Stator resistance out of range (upper limit)	
` ,	74	Stator resistance out of range (lower limit)	
Deadtime compensation	82	Current actual value unequal current set value	
Rotor position detection	102	Current not reached	
(5-step procedure)	105	Information content too small (dd08 < dd07)	
Rotor position detection	112	Current not reached	

dr57	ident error info		0x2239
Identification step	Value	Note	
(Hf detection procedure) 115		Information content is too small (dd08 < dd07 or/and dd09)	d dd10 <

For most error messages, the most likely cause is incorrect wiring of the motor (check phase connection) or incorrect entry of nameplate motor data (e.g. wrong rated motor current, wrong rated frequency or similar).

If the main inductance of the asynchronous machine or the Emf of the synchronous machine is not identified because the target speed is not reached, this can also be caused by too slow ramps or badly adjusted speed controller (continuous oscillation, no stable final speed).

The rotor position identification by "five step" or "hf detection" can also be done during the identification. However, it is better to do it beforehand, because the current for the detection of the position can be optimally adjusted then (=> Chapter 6.2.3.5 System offset).

6.2.18 **Deadtime compensation**

A distortion of the output voltage occurs by the deadtimes of the power modules, which causes negative effects (e.g.) for the calculation of the motor model or in voltage-frequency-characteristic operation. This distortion can be compensated partly by the activation of the deadtime compensation.

Index	Id-Text	Name	Function
0x3505	is05	deadtime index	Index to read out the deadtime compensation characteristic
0x3506	is06	deadtime coeff	Compensation characteristic values
0x3507	is07	deadtime comp mode	Selection of the compensation mode
0x3508	is08	comp limit fact	Adjustment of the deadtime characteristic (only for tests)
0x3509	is09	comp current fact	Values should always be set to 100%

The compensation type is selected with parameter is07:

is07	deadtime comp mode		0x3507
Value	Name Meaning		
0	off	No dead time compensation	
1	e-function Deadtime compensation according to the default-e-fu		ction
2	ident	Deadtime compensation with inverter identified charact	teristic
3	reserved		

Mode "e-function":

In this mode the deadtime compensation is executed with a stored function in the inverter.

Mode "ident":

In this mode the identification of the deadtime characteristic must be done before via dr54 = 1,2 or 5. Then the compensation occurs with the inverter determined characteristic.

The compensation characteristic can be modified with is08 and is09.

is08	comp limit fact	0x3508
Value	Meaning	
0.00200%	Determination of the compensation degree 100% => compensation value = deadtime value	

is09	comp current fact 0x3509	
Value	Meaning	
0.00 200%	Determination of the current for which the dead time characteristic is recorded	
0.00200%	100% => the default value of the inverter is used	

6.2.19 Switching frequency adjustment and derating

Index	Id-Text	Name	Function
0x2021	de33	inverter rated switching frequency	Rated switching frequency
0x2022	de34	inverter max switching frequency	Maximum switching frequency
0x350A	is10	switching frequency	Selected switching frequency
0x350F	is15	temp dep derating	Activation of the temperature-dependent switching frequency reduction
0x3510	is16	min. derating frequency	Lower limit for the current / temperature-dependent switching frequency reduction
0x3516	is22	basic Tp	Selection of the switching frequency group
0x2C48	ru72	act.switch.freq (kHz)	Actual switching frequency

6.2.19.1 Set switching frequency

is10	switching frequency 0x350A	
Value	Meaning	
216.0 kHz	Set switching frequency in 0.1 kHz resolution	

is22	basic T	р		0x3516		
Bit	Func- tion	Value	Plaintext	Notes		
	basic Tp	0	62.5 μs / 16 kHz, 8 kHz, 4 kHz, 2 kHz			
02		basic	1	71.4 µs / 14 kHz, 7 kHz, 3.5 kHz, 1.75 kHz	Selection	n of the switching fre-
02		2	83.3 μs / 12 kHz, 6 kHz, 3 kHz, 1.5 kHz	quency g	group	
		3	100 μs / 10 kHz, 5 kHz, 2.5 kHz, 1.25 kHz			

The switching frequency can be selected in parameter is10. Only data that are permitted as associated values for the selected switching frequency group are accepted.

If the switching frequency group 0: 62.5 μs / 16 kHz, 8 kHz, 4 kHz, 2 kHz is parameterised in is22, only 2, 4, 8 or 16 kHz can be set for is10.

Due to the used power unit, further restrictions on the possible switching frequencies can become effective.

The indicated values in the manual for the maximum current are valid for the rated switching frequency (de33).

Parameter de34 indicates the maximum switching frequency which is permissible for this inverter.

The lower limit of the switching frequency is determined by the used inverter and the minimum application-specific switching frequency (sinus filter dr53).

These limits have priority to the settings of is10 switching frequency or is16 min. derating frequency.

The output frequency-dependent short-time current limits reduce at increased switching frequency (=> Chapter 4.4.2 Overload power components (OL2)).

6.2.19.2 Current-dependent derating

With the current-dependent derating it can be selected if the switching frequency should be reduced automatically on exceeding the short-time limiting currents in order to avoid an OL2 error. In the same way, if a power unit-dependent temperature value is exceeded, the switching frequency can be reduced in order to reduce the internal losses of the inverter. The reduction of the switching frequency can be configured with this parameter.

is16	min. derating frequency		0x3510
Value	Name	Meaning	
0	no derating	The switching frequency is not changed current-dependent	
01600	016kHz	Lower limit for switching frequency reduction	

The min. switching frequency is never fallen below (independent of the adjustment). The minimum switching frequency is e.g. defined by sinus filt.min.switch.freq. dr53 or limited by the power unit (=> installation instructions power unit).

If the value of is16 is higher or equal to is10, there is also no "derating".

The switching frequency is increased when the current is once again within the permissible range (limit – hysteresis).

The actual switching frequency of the inverter is displayed in ru72 act.switch.freq (kHz).

Like is10, is16 is also dependent on the used switching frequency group.

6.2.19.3 Temperature-dependent derating

Additionally to the current-dependent derating, a temperature-dependent derating can be activated with parameter is15 temp dep.

is15	temp dep derating 0x350F		0x350F
Value	Plaintext	Meaning	
0	0: off	Temperature-dependent derating deactivated	
1	1: on Additionally to the current-dependent derating, also the temperature-dependent derating is activated with corresponding setting of is16		

The lower limit for the temperature-dependent derating is the rated switching frequency of the inverter (de33), if the lower limit is not set to a higher value via other parameters (sinusfilter min. switch. freq. dr53 or min. derating frequency is16).

There are 3 temperature values for each inverter:

- Temperature for switching frequency reduction TDR
- Temperature for switching frequency increase TUR
- Temperature for change-over to rated switching frequency

 TEM

These values are dependent on the inverter and can be taken from the installation manual for the respective power unit.

If the heatsink temperature (ru25 Subldx 1 heatsink temperature 1) exceeds the temperature for switching frequency reduction while the switching frequency is higher than the derating lower limit, then the switching frequency is reduced to the next lower stage.

Further reduction occurs after the expiry of 30s if the heatsink temperature is too high (if the derating lower limit has not been reached yet).

If the heatsink temperature (ru25 Subldx 1 heatsink temperature 1) falls below the temperature for switching frequency increase and if at least 30s have been elapsed since the last temperature-dependent reduction / increase of the switching frequency, the switching frequency is increased to the next higher stage (Condition: the switching frequency is lower than the set switching frequencyis10).

If the temperature is exceeded for the change-over to the rated switching frequency, the switching frequency is immediately reduced to the rated switching frequency (provided always the lower limit has not been reached yet). After 30s it is checked whether the switching frequency can be increased again.

The 30s waiting time serves for transient oscillation of the temperature profile.

The current-dependent derating is always superimposed on the temperature-dependent derating.

6.2.20 Interrupt structure of the software

6.2.20.1 Time allocation

Depending on their time priority, various functions of the inverter run in various tasks (time slices, interrupt levels).

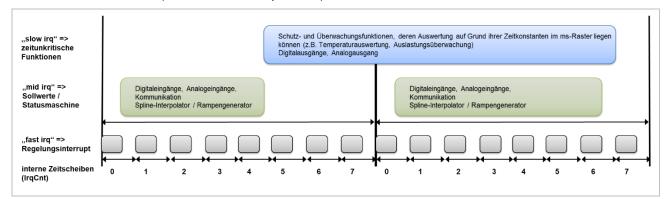


Figure 90: Time allocation

The fastest grid is the basic control grid (also called "basic Tp" or "fast irq"). The basic control grid depends on the switching frequency group. It contains the essential control functions, e.g. for current, speed, etc.

Not all of these control functions are executed in every cycle (see chapter 6.2.20.2 Scan times of position, speed and current controller)

Above there is the middle grid ("mid irq"), in which a lot of the functions for processing the communication (fieldbus, serial interface), for handling the status machine, for processing the setpoints and for error handling are processed.

The slowest grid ("slow irq") contains all functions that are not particularly time-critical (e.g. load and overload monitoring), but which nevertheless require a fixed processing grid.

The configuration of the task times occurs by parameter is22 basic 1	ıp.
	_

is22	basic Tp	basic Tp				
Bit	Func- tion	Valu e	Plaintext	Notes		
		0	62.5 µs / 16 kHz, 8 kHz, 4 kHz, 2 kHz			
0	basic	1	71.4 µs / 14 kHz, 7 kHz, 3.5 kHz, 1.75 kHz	Selection of the switchir quency group and thus control grid		
2	Тр	2	83.3 µs / 12 kHz, 6 kHz, 3 kHz, 1.5 kHz		id thus the basic	
		3	100 μs / 10 kHz, 5 kHz, 2.5 kHz, 1.25 kHz			
	0		8 x TpBase			
3. 4	mid ira	4	4 x TpBase		the middle interrupt	
3, 4	mid irq	8	reserved	trol grid	e of the basic con-	
			reserved			

NOTICE

A changed value in is22 is only effective after the next power-on. is10 switching frequency and is16 min. derating frequency are automatically adapted to the new switching frequency group.

This means: if is10 previously is set to 8 kHz, the value of is10 after PowerOn is automatically changed to 6 kHz by changing the switching frequency group from 0 to 2.

Bit 0...2 basic Tp

The " μ s value" indicates the basic process time (e.g. 62.5 μ s). The kHz values are the switching frequencies which can be adjusted with the selected basic process time.

Precondition: The switching frequency is supported by the respective inverter (=> Installation manual).

Bit 3...4 mid irq

Digital inputs, analog inputs, state machine, operating modes, PDOs, system counters run in the middle interrupt level (in the task "mid irq").

This is called with the setting 0: 8xTpBase every eight "basic Tp". If 0 is selected as switching frequency group and the control grid is $62.5\mu s$, the average interrupt is called every $8 \times 62.5\mu s = 500\mu s$.

Smaller grids for the middle interrupt level can only be set under certain conditions due to the time load of the control card:

The following applies to all control types (A, K, P):

If value 3: $100\mu s$ is parameterized as "basic Tp", value 4: 4xTpBase can also be selected as time grid for "mid irq" . The task "mid irq" is then called every fourth "basic Tp", i.e. every $400\mu s$.

Applies only to control type P:

For each setting for "basic Tp", the value "4: $4 \times TpBase$ " can be parameterised for mid irq. The smallest cycle time of the middle interrupt level is then 250 μs with the setting basic Tp = $62.5 \mu s$ and mid irq = $4 \times TpBase$.

6.2.20.2 Scan times of position, speed and current controller

The following scan times of the internal control circuits also occur by the setting of is22.

Table with scan times of some functions:

		Scan times					
Basic grid Tp	Current control- ler, motor model, hf injec- tion	Speed controller, position controller	Digital inputs, analog inputs, state machine, operating modes	Digital outputs, analog output			
62.5 µs	62.5 µs	250 µs	500 μs	1000 μs			
71 µs	71 µs	286 µs	571 µs	1143 µs			
83 µs	83 µs	333 µs	667 µs	1333 µs			
100 µs	100 μs	400 µs	800 µs	1600 µs			

Assignment of some functions to the interrupt levels

Interrupt level	Assigned functions (selection)
fast irq	Motor model, current controller, speed controller, position controller, encoder interface, hf injection
mid irq	Digital inputs, analog inputs, status machine, operating modes, PDOs, system counter
slow irq	Digital outputs, analog output

There is another dependency for the effective controller cycle times: the actual active switching frequency (displayed in ru72 act. switch. freq (kHz)).

Although the controller is called in a faster grid, only 2 voltage values per modulation period can be output at a switching frequency of 2 kHz. This means that, despite a current controller cycle of 62.5 μ s, the voltage can only be changed every 250 μ s (with switching frequency group 0: 62.5 μ s).

6.2.20.3 Task setting and synchronous fieldbus operation

For the influences of the task setting on the fieldbus operation please also read the manual ma_dr_x6_fbs_phb_20191938_en.

The minimum value for synchronous fieldbus operation is dependent on is22.

The changeover of the basic process time has the following effects on the synchronous PDOs:

The minimum value for synchronous fieldbus operation is equal to the cycle time of the middle interrupt level (the task "mid irq)

Value is22	mid irq = minimum cycle time PDOs
0: 62.5 µs / 16 kHz, 8 kHz, 4 kHz, 2 kHz + 8 x TpBase	500µs
7: 100 µs / 10 kHz, 5 kHz, 2.5 kHz, 1.25 kHz + 4 x TpBase	400µs
4: 62.5 μs / 16 kHz, 8 kHz, 4 kHz, 2 kHz + 4 x TpBase	250µs (only control type P)

Further allowed values for the sync interval are multiples of "mid irq". With is 22 = 0, multiples of $500\mu s$, i.e. 1ms, 1.5ms etc.

minimum sync interval all cards					
Value is22	0: 62.5 μs 8 x TpBase	1: 71 µs 8 x TpBase	2: 83 µs 8 x TpBase	7: 100 µs 4 x TpBase	
Minimum sync interval	500 µs	571.4 μs	666.7 µs	400 µs	
Minimum sync interval P card					
4: 5: 6: 7: Value is22 62.5 μs 71 μs 83 μs 100 μs 4 x TpBase 4 x TpBase 4 x TpBase 4 x TpBase					
Minimum sync interval	250 µs	285.7 μs	333.3 µs	400 µs	

The following sync intervals, which represent an integer multiple of 1ms, are possible for the switching frequency groups for all control types:

Sync interval	Value of is22	selectable switching frequencies
1 ms	0	16 kHz, 8 kHz, 4 kHz, 2 kHz
2 ms	2	12 kHz, 6 kHz, 3 kHz, 1.5 kHz
4 ma	1	14 kHz, 7 kHz, 3.5 kHz, 1.75 kHz
4 ms	3	10 kHz, 5 kHz, 2.5 kHz, 1.25 kHz

6.2.20.4 Further task dependencies

- Parameter st35 system counter increases by the value 2 after 8 times the "basic Tp" time.
- The times for the offline mode of04 time base must be written with a multiple of the basic Tp.
- By increasing the Tp, more computing power is available for additional functions.
- The cycle times of the controllers and I/O functions increase by the same factor as the basic process time.

6.2.20.5 Runtime monitoring

The maximum running time of the three main interrupt sources is monitored. If too many functions are activated and the limit value is exceeded, "error runtime" is triggered.

Index	Id-Text	Name	Function
0x2955	aa85	period fast irq	Time measurement of the periodic call of the fast interrupt in µs
0x2956	aa86	time fast irq	Current runtime of the fast interrupt in µs.
0x2957	aa87	mean time fast irq	Mean value of the runtime of the fast interrupt in µs.
0x2958	aa88	max time fast irq	Drag pointer of aa86. The maximum runtime is determined in the fast interrupt. Resettable with reset.
0x2959	aa89	error level fast irq	ERROR runtime is triggered, if the value in aa88 exceeds the limit value of aa89 defined by KEB.
0x295A	aa90	period mid irq	Time measurement of the periodic call of the mean interrupt in μs .
0x295B	aa91	time mid irq	Current runtime of the mean interrupt in µs.
0x295C	aa92	mean time fast irq	Mean value of the runtime of the mean interrupt in µs.
0x295D	aa93	max time mid irq	Drag pointer of aa91.
0x295E	aa94	error level mid irq	ERROR runtime is triggered, if the value in aa93 exceeds the limit value of aa94 defined by KEB.
0x295F	aa95	period slow irq	Time measurement of the periodic call of the slow interrupt in µs.
0x2960	aa96	time slow irq	Current runtime of the slow interrupt in µs.
0x2961	aa97	mean time fast irq	Mean value of the runtime of the slow interrupt in µs.
0x2962	aa98	max time slow irq	Drag pointer of aa96.
0x2963	aa99	error level slow irq	ERROR runtime is triggered, if the value in aa98 exceeds the limit value of aa99 defined by KEB.

Which interrupt level is responsible for this error can be determined in aa88, aa93 and aa98 and appropriate measures can be initiated.

Increasing the "basic Tp" in is22 always leads to an improvement of the time utilization.

The following factors have a special influence on the time load of the individual interrupt levels (only exemplary, can vary depending on the control type)

aa88 max time almost too long	Resolver evaluation hf injection Consider saturation influences
aa93 max time mid too long	Number and type of process data
aa98 max time slow too long	Special functions: Coolant management Power-dependent speed limitation

[&]quot;Error runtime" can be reset by a reset in the controlword.

6.2.21 Hardware/software current control

is36	hard./softwa	software current reg.		0x3524
Bit	Function	Value	Plaintext	Notes
		0	off	off
		1	reserved	
01	mode	2	SSR on	If one of the phase currents is above the level, all IG-BTs in the basic time are switched off. If the current is below the level again, activation occurs in the next basic time.
		3	reserved	reserved
9	sel. cur- rent limit	0	is37	HSR/SSR Current [OcLim%], is37
		8	application para.	The lowest current limit from the is/dr - groups

is37	HSR/SSR current [OcLim%]	0x3525
Value	Meaning	
0100 %	Current level for the phase currents when the modulation is switched off. We the modulation is switched on again. The percentage value refers to the OC device.	0

is38	HSR/SSR activ counter	0x3526
Value	Meaning	
04294967295	In the basic interrupt this cell is increased by one, if HSR is	s active

6.2.22 Sine-wave filter

6.2.22.1 Start-up instructions

If a sinus filter is connected between inverter and synchronous motor, no identification of the motor data or the sinus filter data is possible. The capacity (Cf) would falsify the measured values.

Thus, the motor data must be determined before the connection. The filer data are shown in the respective data sheet. The ultimate value is the critical frequency fk (dr64). It is calculated from the motor/filter data.

The current that flows into the capacitor is calculated depending on the output voltage and frequency and preset inverted in the reactive current setpoint (this setting is not possible in v/f operation).

6.2.22.2 Conditions for the operation of a sinus filter

cs00 control modes					
ASM		SM			
all closed-loop operating	v/f	all closed-loop operating modes		v/f	
modes	V/I	4kHz	8kHz	V/I	
yes	yes	fk < 2kHz	fk < 4kHz	yes	
		fout < 0.8 kHz	fout <1.6 kHz		

fout = output frequency fk = critical frequency (dr64)

6.2.22.3 Parameterization

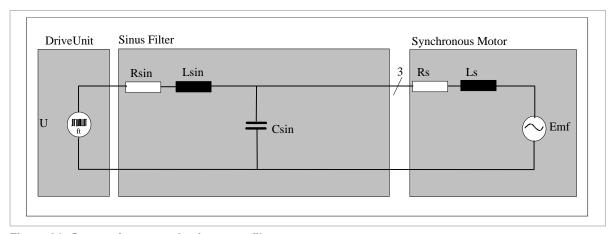


Figure 91: Connection example sine-wave filter

Index	Id-Text	Name	Value I	Description
Sine-wave filter				
0x2231	dr49	sinus filter ind. UV	2 * Lsin If Lsin and Rsin are the data sheet values for one phase the filter, then the concatenated (UV) value must be entired.	
0x2233	dr51	sinus filter resistance UV	2 * Rsin	in dr49 and dr51 according to the adjacent formula. Example: The inductance Lsin is 0.2 mH per phase => then dr49 = 0.4 mH must be parameterized.

Index	Id-Text	Name	Value	Description	
0x2234	dr52	sinus filter cap. UV [uF]	Csin / 2	If C is the capacitance value in the data sheet for one phase of the filter, Csin can be determined according to the formulas listed below. The phase-to-phase capacity of the sinus filter must be entered in dr52 (phase-to-phase value UV) = Csin/2. Star connection: C C C C C Delta connection: C Sin = 3 * C	
0x2235	dr53	sinus filter min. switch. freq.		Minimum switching frequency whereby the sinus filter may be operated (typical values 4kHz, 8kHz). "error norm motordata" is displayed in dr02 if the max. switching frequency (de38) of the inverter is smaller than this value. Otherwise the smallest switching frequency that is higher or equal to dr53 is used. Then the parameterization of is10 has no effect. Example: is10 = 4kHz dr53 = 8kHz de33 = 8kHz => switching frequency = 8kHz	

Index	Id-Text	Name	Value	Description
Bandpass	Bandpass filter			
0x2240	dr64	bp filter critical freq. calc.		Displays the critical frequency calculated from the motor/filter data. This frequency is filtered by the bandstop filter from the current signal.
0x2241	dr65	bp filter freq set		The default value = 0 (over dr64) means, the automatically calculated critical frequency is taken from dr64.
0x2242	dr66	bp filter q-factor		Degree of the quality of the filter. Default value =0.5. The higher the value, the more narrowband the filter chracteristic.
0x2409	ds09	bp filter coeff index /		These parameters are only available for download compatibility with old lists. The content is identical with ds17.
0x240A	ds10	bp filter coeff		The value of ds09 + 1 corresponds to the subindex of ds17.
				The default value for ds17[1] is the value 131068 (over drpara).
0x2411	ds17 bp filter coeff[1] bp filter coeff[9]	coeff[1] bp filter		That means: The filter parameters of the band-stop filter are automatically calculated from the dr parameters for the parameterised frequency (dr65 bp filter frequency set) and the requested quality (dr66 bp filter q-factor).
		coen[a]	Alternatively, the filter coefficients can be preset directly via ds17. Thereby the filter can be adjusted with any characteristic.	
Band-pass filter activation				
0x2404	ds04	current mode		Activate the bandpass filter in ds04 bit 3 "bandpath filter = on"!

6.2.23 Speed search

Each time the modulation is switched on, the drive can perform an automatic speed search and thus connect to a running motor. The speed search can be activated in dd16. The most favorable procedure is automatically selected internally.

When operating with an absolute value encoder, directly the speed and electrical position are accepted.

When operating without encoder, the motor speed and the electrical position are measured by test signals.

Index	Id-Text	Name	Function
0x3610	dd16	speed search mode	Activation of the automatic speed search
0x3612	dd18	speed search current [In]	Selection of the measuring current for speed determination

dd16	speed search mode 0x361				
Value	Name	Meaning			
0	off No automatic speed search				
1	on Automatic speed search				
5	On, high speed, emf based	Speed search for synchronous high-frequency spindles. The counter-voltage constant of the motor is used for the calculation of the speed.			

During the speed search, the modulation is switched on briefly with zero voltage. The speed and position are determined from the step responses of the current. The maximum measuring current for this function can be preset with dd18.

Precondition for a successful speed search is the identification / parameterization of the equivalent circuit data, also in v/f operation.

6.2.24 Protection functions (ramp stop, current limitation in open-loop (v/f) operation)

Overview of protection functions

Function	Target	Intervention	modes of operation (co01)	control mode (cs00)
v/f current limit control	Limitation of the current	of the current Voltage		v/f
LA(I)	Limitation of the current	Ramp setpoint at acceleration (ACC)	velocitiy	v/f*
LD(I)	Limitation of the current	Ramp setpoint at deceleration (DEC)	velocitiy	v/f*
LD(U)	Limitation of the DC link voltage	Ramp setpoint at deceleration (DEC)	velocitiy	all

^{*)} only useful in v/f, but active in all control modes

Index	Id-Text	Name	Function		
0x243C	ds60 protection function		Parameter structure for the definition of overcurrent / overvoltage behaviour		
Subidx	Name		Function		
1	v/f curre	ent limit control mode	Current controller access in v/f operating mode		
2	ramp st	opping mode	Mode for LAD-Stop (I/U)		
3	LD-U st	op voltage level	DC link voltage setpoint for the LD (U) stop function		
4	LAD-I K	I [1/As]	Integral gain factor (KI) for current-dependent change of acceleration / deceleration ramps		
5	LAD-I K	DI [1/As]	Differential + integral gain factor (KD + KI) Evaluation of the current rise with integration. The ACC/DEC ramp is also reduced below the current level Imax ^(*1) depending on the rate of current rise		
6	LD-U KI [1/Vs]		Integral gain factor (KI) for DC voltage-dependent change of the deceleration ramps		
7	LD-U KDI [1/Vs]		Differential + integral gain factor (KD + KI) Evaluation of the voltage rise with integration. The DEC ramp is also reduced below ds60[3] LD-U stop voltage level depending on the rate of voltage rise.		

 $^{^{(*1)}}$ The maximum current "Imax" is formed from the following parameters: dr12 max. current %, is11 max current [de28%], is35 set current limit, is14 overload protect mode

ds60	v/f current limit contro	0x243C Subldx 1				
Bit	Function Valu Plai e ntext			Function		
			off	No current controller active		
0	always activ	1	on	Current controller becomes active if the activation condition is fulfilled		
1	active at n <	0	off	Activation if the speed is less than 10% of the rated		
ı	10%Nn		on	speed (dr04 rated speed)		

The maximum current is formed from the following parameters: dr12 max. current %, is11 max current [de28%], is35 set current limit, is14 overload protect mode, ds62[4] max.DC current

Ramp state ACC or CONST:

If the apparent current is higher than the maximum current, the current controller intervenes. The current controller (ds00...ds03) is parameterized via the equivalent circuit data (dr17, dr18, dr21 and dr22) of the motor. The default values for the equivalent circuit data can be calculated from the nameplate data with dr99 motor data control = 2. Better results for the current controller parameterization are achieved with the motor identification.

Ramp state DEC:

If the apparent current is higher than the maximum current, the modulation is switched off for one current measurement cycle.

ds60	ramp stopping	ramp stopping mode 0x					
Bit	Function	Value	Plaintext	Function			
	0 off		off	The speed setpoint ramp is decelerated / stopped dur-			
0	LD (I) - Stop	1	on	ing deceleration (DEC) if the apparent current > Imax ^(*1) or the rate of current rise is too high.			
	1 LD (U) - Stop		off	The speed setpoint ramp is decelerated / stopped during deceleration (DEC) if the DC link voltage > ds60[3] LD-U stop level or the rate of voltage rise is too high.			
1			on				
			off	The speed setpoint ramp is decelerated / stopped of			
2 LA (I)-Stop		4	on	ing acceleration (ACC) if the appare Imax ^(*1) or the rate of current rise is			

^(*1) The maximum current "Imax" is formed from the following parameters: dr12 max. current %, is11 max current [de28%], is14 overload protect mode, ds62[4] max. DC current

6.2.25 DC braking

6.2.25.1 Overview

The DC braking is used to decelerate/stop the drive if no braking energy shall enter the DC link. No braking resistor is required. The braking is caused by DC voltage, which is applied onto the motor winding.

The braking energy is converted into heat loss in the motor.

NOTICE

Select the DC braking time and the max. DC braking current by way that the motor is not overheated.

DC braking is available for the following motor / control types:

	ASM	Х
Motor type	SM	-
	SyncRM	-
	v/f	Х
Control mode	ASCL	Х
	Encoder	-
	velocity mode	Х
Made of eneration	profil position mode	-
Mode of operation	cycle syn position	-
	cycle syn velocity	-

DC braking is available for:

- operation mode 2: velocity mode
- · control mode v/f or ASCL
- Motor type: Asynchronous motor

6.2.25.2 Parameter overview

Index	Id-Text	Name	Function		
0x243D	ds61	DC braking source	Selection of the inputs that trigger DC braking		

Index	Id-Text Name		Function		
0x243E	ds62	dc braking	Parameter structure for defining the behavior at DC braking		
Sub Idx	Name		Function		
1	DC brak	ing mode	Different modes of braking adjustable		
2	DC timing mode		Parameterization of the modulation switch-off time and activation mode of the DC brake when using a digital input		
3	modulation off time		Display parameter of the hardware-dependent modulation switch-off time of the device		
4	max. DO	C current[%In]	Current limit to which the higher-level boost controller limits the motor current, with regard to the rated current of the motor.		
5	DC boos	st [%Un]	Max. DC voltage during DC braking proportionally to the rated voltage (Un) of the motor		
6	braking time		Braking time		
7	braking speed level [%Nn]		Speed level in % of the rated motor speed to activate the braking		
8	braking state		State of DC braking 0 = ready, 1 = flux reducing, 2 = activ		

6.2.25.3 Activation of DC braking

ds62[1] DC braking mode defines the activation and mode of DC braking.

ds62		D	C braking mo	de	0x243E Sub ldx. 1		
Bit	Function	Value	Plaintext	Notes	Notes		
		0	off	Off			
02	mode	1	DC-brak- ing	DC braking mode 1			
		0	off	No start by digital ir	nput		
	start by	8	on	Start by digital inpu	t		
35	35 digital input		On + speedlevel	Start by digital input and additionally dependent on the actual speed			
	0 off No status-o		No status-depende	nt start			
6 0	start in	64	on	Start in state: "quickstop", "fault reaction", "shut down", "disable operation active"			
06	68 stopping state		on + speed level	Start in state: "quickstop", "fault reaction", "shut down", "disable operation active" and additionally dependent on the actual speed.			
		0	off	No ramp state dependent activation of the DC braking			
911 start at				DC braking if deceler => Ramp state "DE			
	DEC	1024	speed level	display) and the act	when the target speed (ru05 set value tual speed (ru08 actual value) are below raking speed level [%Nn]). The condition seed has been once above the level.		

ds62	DC braking mode				0x243E Sub ldx. 1	
Bit	Function	Value	Plaintext	Notes		
	start af-	0	off	No DC braking at the start		
12,13	ter switched on	4096	on	The DC braking is activated at the change from st12 state machine display 4: switched on to 11: start operation activ		

6.2.25.3.1 DC braking: mode (Bit 0...2)

Currently, only one DC braking mode is implemented:

- Switching off the modulation for a preset time / reduction of the magnetic flux
- Connecting a DC voltage vector for a parameterizable time

6.2.25.3.2 DC braking: start by digital input sel (Bit 3...5)

An activation condition is the start by digital input (Bit 3: start by digital input selection = "8: on" or "16: on + speed level")

An activation input must be selected in ds61 DC braking source:

ds61	DC bra	king sourc	Э	0x243D
Bit	Value	Name	Start by	·
015	0	no in- put	Function off	
0	1	l1	Input I1	
1	2	12	Input I2	
2	4	13	Input I3	
3	8	14	Input I4	
4	16	15	Input I5	
5	32	16	Input 16	
6	64	17	Input I7	
7	128	18	Input 18	
8	256	IA	Input IA	
9	512	В	Input IB	
10	1024	IC	Input IC	
11	2048	D	Input ID	
1215			reserved	

With "start by digital input selection = 16: on + speed level" the requested actual speed level must additionally be set in ds62[7] braking speed level [%Nn].

6.2.25.3.3 DC braking: start in stopping state (Bit 6...8)

Start of the DC braking in state: "quickstop", "fault reaction", "shut down", "disable operation active". During operation in the torque limit, the speed setpoint at the ramp output can reach zero before the actual speed has fallen below ds62[7] braking speed level [%Nn].

To ensure that the DC braking is safely activated with the setting 128: on + speed level, the waiting time before the modulation switch-off (pn45 fault reaction time) must be configured accordingly.

6.2.25.3.4 DC braking: start at DEC (Bit 9...11)

With start at DEC = 512: on, the DC braking is started as soon as the ramp state DEC is active. If DC braking shall be started below a speed level, the setting 1024: speed level must be selected. During operation in the torque limit, the ramp state DEC may have been left and changed to state "CONST" before the speed level ds62[7] braking speed level [%Nn] is fallen below. Therefore the mode "1024: speed level" monitors whether both the target speed (ru05 set value display) and the actual speed (ru08 actual value) are below the level. The condition is that the actual speed has been once above the level ds62[7] braking speed level [%Nn].

6.2.25.3.5 Start after switched on (Bit 12, 13)

The DC braking is activated at the change from st12 state machine display 4: switched on to 11: start operation activ

If Speed Search (dd16) is activated, this function runs first.

If the identified speed is less than 5% of the rated motor speed for encoderless drives, it is evaluated as "ZERO". In this case, mode "Start after switched on" is carried out.

ds62	timing mode			0x243E Sub ldx. 2
Bit	Function	Value	Plaintext	Notes
02	modulation off time	0	base block time (constant)	Setting the motor de-exitation time
34 digital input	digital input	0	braking time	Parameter ds62[6] braking time determines the time of the DC braking
	digital input	8	State	The digital input determines the time of the DC

6.2.25.4 DC braking Timing

6.2.25.4.1 Motor de-exitation time (Bit 0...2)

Before DC braking can be started, the flux of the asynchronous machine must be reduced in order to reduce current peaks when switching to DC voltage.

Cause: The DC voltage reacts against the output voltage of the motor which depends on the speed * motor flux.

Depending on the selected control mode cs00 there are different methods for flux reduction.

6.2.25.4.1.1 Motor de-excitation time in v/f operation

In v/f mode, the modulation is switched off for an inverter-dependent constant time (minimum switch-off time).

If ru08 actual value at the start of the DC braking is less than 5% of the rated motor speed, the minimum switch-off time is omitted and the DC voltage is immediately switched to the motor.

6.2.25.4.1.2 Motor de-excitation time in encoderless speed-controlled operation (ASCL)

The modulation is not switched off in closed-loop operation (ASCL), but the flux is reduced by the control. The value to which the flux is to be lowered is calculated depending on the actual speed:

- Actual speed <= 5% rated speed => The flux must not be reduced, set flux = 100% rated flux
- Actual speed >= rated motor speed => The flux is reduced to 20% of the rated flux

The set flux is linearly interpolated between these two speed points.

Figure 92: Motor de-excitation time ASCL

6.2.25.4.2 Braking time

0: braking time
Parameter ds62[6] braking time determines the time of the DC braking. After
the time has elapsed, "zero" must be detected at the digital inputs to restart the
DC braking again.

8: state

The digital input determines the time of the DC braking. As long as it is set, the DC braking is also active.

6.2.25.5 DC braking procedure

6.2.25.5.1 Start of the DC braking

The start condition is selected in ds62[1] DC braking mode.

- Activation by a digital input
 - Input programmable in ds61 DC braking source
 - Can be combined with falling below a speed level
- Start by the status of the ramp generator
 - Can be combined with a speed level ds62[7] braking speed level
- > Start depending on the CIA state machine
 - State machine in a "stopping mode" (quickstop, fault reaction, shut down active, disable operation active)
 - "stopping mode" can be combined with falling below a speed level
 - Change of the state machine to "switched on"
- Start depending on the state of the ramp generator
 - State DEC
 - Depending on target and actual speed

The flux of the asynchronous motor must be reduced to activate the DC braking. The method of flux reduction can be selected with ds62[2] timing mode Bit 0...2. Currently only one mode is available. Depending on the control mode, the modulation is switched off for a constant, hardware-dependent time or the flux is actively reduced. The modulation off time is displayed in ds62[3] modulation off time.

6.2.25.5.2 Braking time

The time of DC braking is determined by ds.62[6] braking time.

When using a digital input for control and selection of ds62[2] Bit 3...4 digital input = 8: state the duration of the DC braking is determined by the digital input.

6.3 Speed controller

6.3.1 Overview

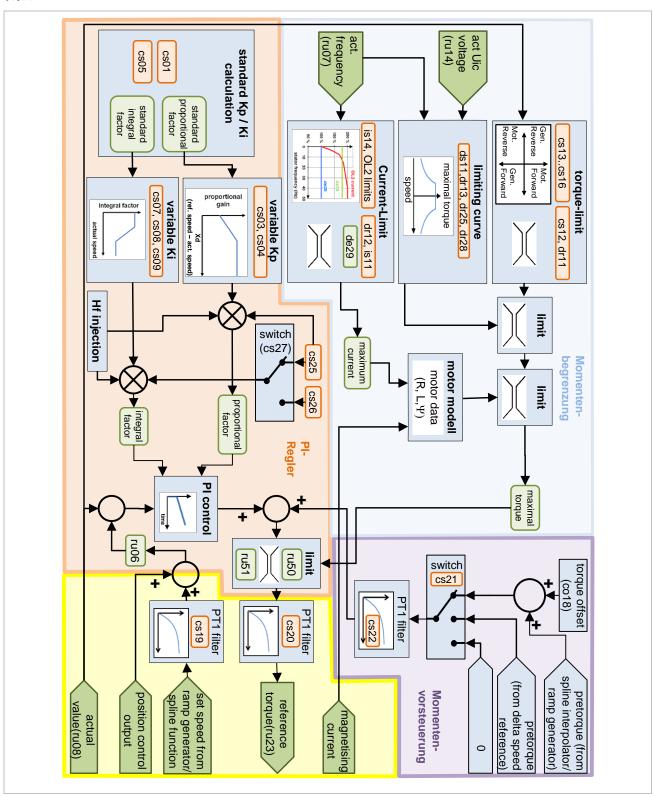


Figure 93: Speed controller overview

6.3.2 PI-speed controller

The speed controller is a PI controller which is defined by its total gain (cs01 / valid for the proportional and integral part) and the reset time Tn (cs05).

The proportional factor Kp and integral factor Ki of the controller is internally calculated from these parameters.

Additionally, there is the possibility to influence the proportional part depending on the system deviation and the integral part depending on the actual speed.

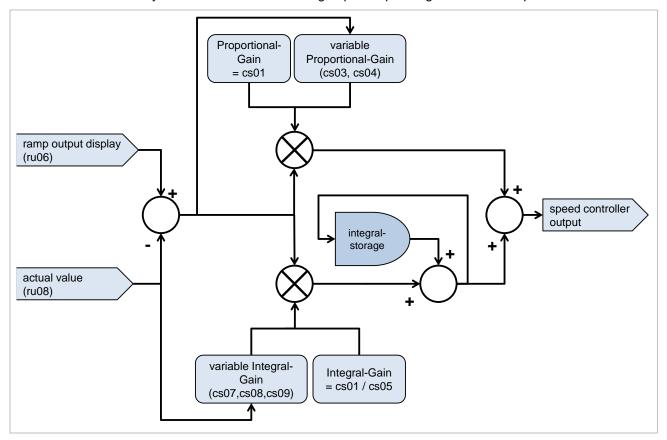


Figure 94: Pi-speed controller

In order to improve the control performance of the drive (smaller overshoot, higher dynamics), the speed controller can be pre-controlled with known mass moment of inertia.

The gain cs01 KP speed and reset time cs05 Tn speed of the speed controller can be calculated automatically by the drive. Therefore the mass moment of inertia of the entire system dr32 inertia motor (kg*cm^2) + rigidly coupled load cs17 inertia load (kg*cm^2) must be entered.

cs99	optimisation factor		0x2763
Value	Display		
19	off	Automatic controller calculation deactivated	
20100	2.010.0	Hardestsoftest automatic controller setting	

The symmetrical optimum cs99 optimisation factor is used to set a value for cs01 KP speed and cs05 Tn speed in a defined ratio depending on the set mass moment of inertia and the desired control dynamics.

Parameters for a dynamic, hard speed controller adjustment are calculated with cs99 = 2.0.

Disturbance factors - such as torsion or backlash of the load coupling - influence the entire system. A subsequent manual fine adjustment of the controller may therefore be necessary.

Parameters for a soft and slow speed controller adjustment are calculated with cs99 = 10.0.

A possible disturbance at encoderless operation is an oscillation on the estimated speed. An extension of the filter time ds28 (A)SCL filter speed calc. often allows a more dynamic speed controller adjustment, i.e. a smaller value for cs99.

The encoder resolution must be considered at operation with encoder. The lower the resolution, the higher the calculated gain.

The speed controller parameters are changed with writing on cs99.

The automatic precharging of the speed controller parameters can be deactivated with the adjustment of cs99 = 19 = off.

If cs01 KP speed or cs05 Tn speed is adjusted manually, the value of cs99 changes automatically to 19 "off" = automatic calculation deactivated.

The adjustment cs01 = 10.0 = 10 %Mn / rpm means:

- at speed deviation of 1 rpm, 10% of the motor rated torque is output from the controller as proportional component
- > the rated torque is output at a deviation of 10 rpm

6.3.3 Variable proportional factor ((system deviation)

The proportional gain (Kp) can be increased proportionally to the control deviation.

Thereby the total proportional gain is calculated to:

- variable factor = system deviation [% rated speed] * cs03
- the variable factor is limited by cs04 speed ctrl limit
- Total proportional gain = (1 + limited variable factor) * cs01

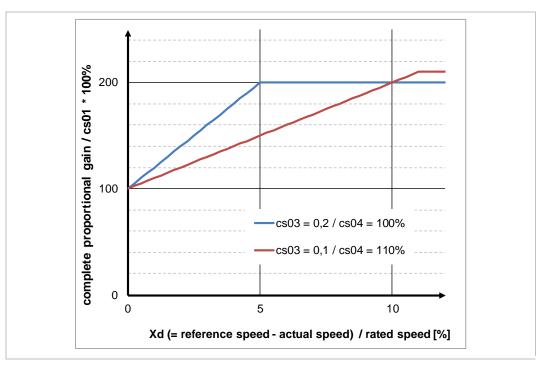


Figure 95: Variable proportional factor

Example:

```
cs01 = 1.2 [%Mn / rpm]

cs03 = 0.5

cs04 = 150%

Setpoint speed = 100 rpm

Actual speed = 80 rpm

Rated speed = 2000 rpm

=> Xd = (100 - 80) / 2000 * 100 = 1 % rated speed

=> variable factor = 0.5 * 1 = 0.5

=> limitation of the factor with cs04 = 1.5 => no limitation

=> total proportional gain = (1 + 0.5) * cs01 = 1.5 * 1.2 = 1.8

=> Maximum proportional gain = (1 + cs04) * cs01 = 2.5 * cs01 = 3
```

6.3.4 Variable proportional/integral factor (speed)

The proportional and integral factor can be changed speed-dependent in order to achieve a higher standstill rigidity.

The total proportional factor is made up of:

$$KP_{total} = KP_{base} + KP_{var}$$

 $KP_{base} = cs01$

 KP_{var} changes between cs08 speed for max. kp/ki and cs09 speed for normal kp/ki from value cs06 variable kp speed offset to 0.

Maximum KP = KP_{base} * (1 + cs06)

The total integral factor is made up of:

 $KI_{total} = KI_{base} + KI_{var}$

 $KI_{base} = cs01 / cs05$

KI_{var} changes between cs08 speed for max. kp/ki and cs09 speed for normal kp/ki from value cs07 variable ki speed offset to 0.

Maximum KI = KI_{base} * (1 + cs07)

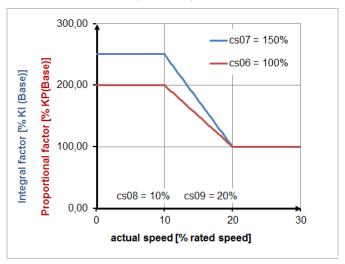


Figure 96: Variable proportional factor (kp) / integral factor (ki) with cs08=10%, cs09=20%

Example:

6.3.5 Speed controller adjustment via process data

The calculation of internal control proportional / integral factors can not be done quickly enough in order to preset cs01 and cs05 via process data.

To give the user the possibility of dynamic controller adjustment via process data, the proportional and/or integral factor can be weaken with cs25 and cs26 (writable via process data).

Index	Id-Text	Name	Function
0x2719	cs25	speed ctrl (KP) adaption	Presetting of the controller weakening in percent [jn 0.1%]. Depending on cs27, cs25 acts on integral and proportional or only on the proportional gain.
0x271A	cs26	speed ctrl (KI) adaption	Presetting of the controller weakening in percent [jn 0.1%]. Depending on cs27, cs26 has no function or acts on the integral gain.
0x271B	cs27	speed ctrl KP/KI adapt mode	Determines the influence of cs25 and cs26.

cs27	speed ctrl KP/KI adapt mode 0x271B		
Value	Name Meaning		
0	only cs25	cs25 affects integral and proportional gain.	
1	P=cs25, I=cs26	cs25 affects proportional and cs26 affects integral gair	٦.

If the Ki is set to zero by the controller weakening, the integral part is also deleted.

6.3.6 Determination of the mass moment of inertia

The mass moment of inertia of the total system must be known (i.e. motor + rigidly coupled load) both for the automatic calculation of the speed controller parameters and for the precontrol of the acceleration torque.

The mass moment of inertia can be determined by an acceleration test if it is unknown.

Therefore the system must be accelerated with defined, constant torque. It must be ensured that there is no significant, acceleration-independent load torque by the application.

The following formula is valid:

$$J [kg * cm^{2}] = 95493 * \Delta M [Nm] * \frac{\Delta t [s]}{\Delta n [rpm]}$$

Example:

the following acceleration was recorded with COMBIVIS:

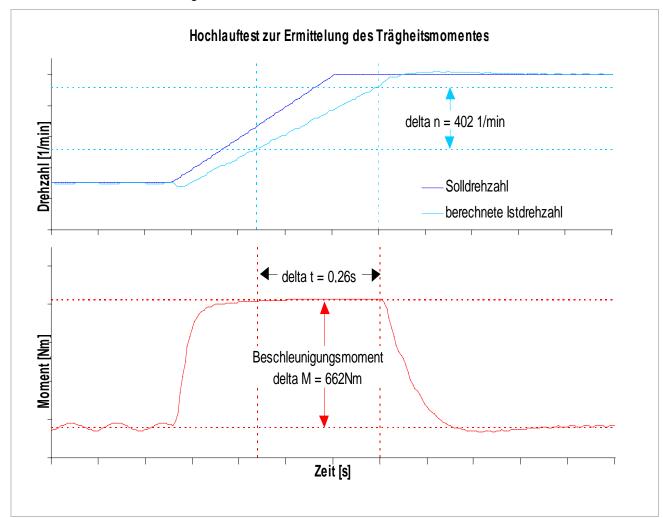


Figure 97: High-run test with COMBIVIS

$$J [kg * cm^{2}] = 95493 * 662 Nm * \frac{0,.6 s}{402 rpm} = 40886 kgcm^{2}$$

In order to eliminate the influence of friction from the calculation, the mass moment of inertia can be determined similarly a second time, however by deceleration test. The average value of both inertia, determined at acceleration or deceleration must be entered in parameter dr32 inertia motor (kg cm^2).

Since only one total inertia (motor + load) is determined cs17 must be set to 0.

6.3.7 Speed controller PT1 output filter

A PT1 low pass filter is series-connected to the speed controller.

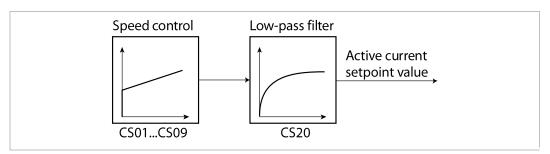


Figure 98: PT1 output filter

Thus, high-frequency oscillations (caused by spring elements in the mechanics of the drive train) can be filtered from the active current setpoint signal.

The filter time is adjusted in parameter (cs20 torque ref PT1 time). A longer time causes a stronger smoothing of the active current signal, but also a lower dynamic control behaviour and increased oscillation.

6.3.8 Torque precontrol

The required torque to accelerate/decelerate the drive can be calculated if the mass moment of inertia of a drive is known.

Additionally, the torque can also be pre-controlled by the control via co18 (CiA 0x60B2) torque offset.

This	function	is	defined	with	the	following	parameters.

Index	Id-Text	Name	Function	
0x2715	cs21	pretorque mode	orque mode Source selection for the torque precontrol	
0x2716	cs22	pretorque PT1-time Filter time for torque precontrol (PT1 filter)		er)
0x2717	cs23	pretorque delta time	Time for speed setpoint difference	at cs21 pretorque
0x2718	cs24	pretorque factor	Access of the precontrol	mode = 1
0x2512	co18	(CiA 0x60B2) torque offset	Offset can be preset via the control	at cs21 pretorque mode = 2
0x2514	co20	internal pretorque fact	Access of the precontrol	IIIOUE = Z

6.3.8.1 Torque precontrol mode

Different modes can be adjusted via cs21 pretorque mode:

cs21	pretorque n	pretorque mode			
Value	Name	Meaning			
0	off	no precontrol			
1	delta speed ref	Mode 1: The precontrol is determined from the setpoint the time of cs23 and the inertia.	speed difference in		
2	reference torque	Mode 2: The precontrol is calculated in the spline interp tor from the acceleration-/deceleration values and the inertia. A can preset an offset via co18.			

Mode 1: Independent on the operating mode the torque precontrol is always generated from the difference of the speed setpoint and the previous value. Peaks in the precontrol signal can be reduced by selecting a higher delta time (cs23 pretorque delta time). A change of the reciprocal of amplification is possible with cs24.

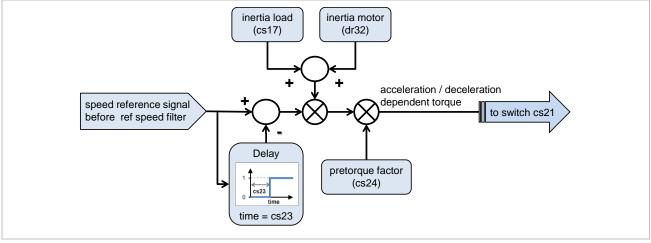


Figure 99: Torque precontrol mode 1

Mode 2: The torque precontrol is done directly from the actual operating mode. An offset can be added via the control to this signal to realize (e.g.) additional, application-specific precontrol. A change of the reciprocal of amplification is possible with co20.

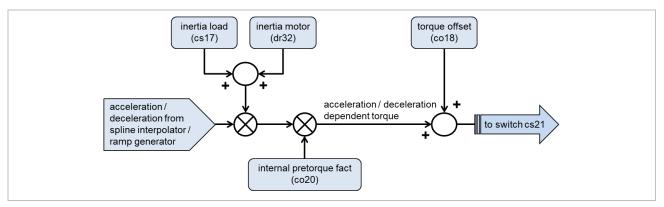


Figure 100: Torque precontrol mode 2

6.3.8.2 Torque precontrol reciprocal of amplification

The reciprocal of amplification of the acceleration/deceleration-dependent precontrol is adjustable. Parameter cs24 pretorque factor must be used in mode 1 and parameter co20 internal pretorque fact in mode 2.

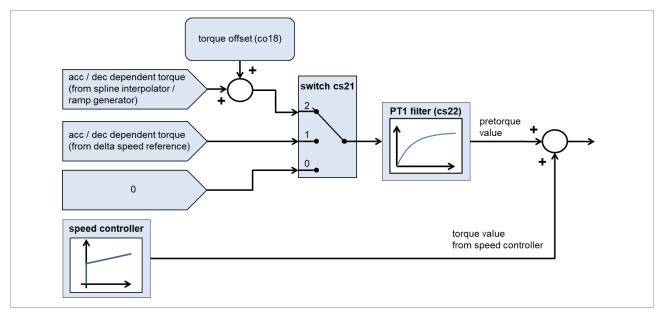
Not always the best control result is reached with the precontrol reciprocal of amplification of 100%. This is partly due to the inaccuracy or change of the inertia, but also partly on the behaviour of the total control circuit. The required torque (motor and regenerative) can be different at the same acceleration (e.g. due to friction).

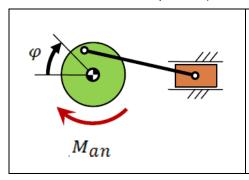
The control performance is significant improved with correctly adjusted precontrol.

6.3.8.3 Torque precontrol smoothing

Torque peaks, caused by discontinuous speed setpoint setting can be reduced by a low pass filter. Also valid here: the higher the filter time (cs22 pretorque PT1 time), the better the smoothing but the precontrol is more undynamic and decelerated.

An excessively decelerated precontrol can operate even against the speed controller output and lead to vibration. The parameter for the precontrol filter is valid for mode 1 and mode 2.




Figure 101: Torque precontrol smoothing

6.3.8.4 Not linear torque precontrol

6.3.8.4.1 Principle

The precontrol has not the desired effect proportional to the acceleration (e.g. at crank operation). Here observe non-linear relations.

$$M_{an}(\varphi) = M_w(\varphi) + J(\varphi) * \ddot{\varphi} + \frac{1}{2} * J'(\varphi) * \dot{\varphi}^2$$

Index	Id-Text	Name	Function
0x2524	co36	inertia reducing mode	0 23
0x2525	co37	inertia reducing fact	0 255 -> 0 1.0, Array 64
0x2526	co38	inertia derivation fact	-127 0 127 -> -101, Array 64
0x2527	co39	inertia derivation [kg*cm^2]	
0x2528	co40	weight comp fact	-127 0 127 -> -101, Array 64
0x2529	co41	weight comp torque	1024 → Mn
0x252A	co42	speed angle offset	0 100 ms
0x252B	co43	speed ctrl reducing fact	0 255 -> 0 1.0, Array 64

co36	inertia reducing mode				
Bit	Name	Meaning			
0	pretorque reducing	Scaling of the precontrol with the factor from co37(φ)			
1	inertia derivation	Modification of the precontrol with co38(φ) * co39			
2	weight compensation	Compensation of weights $Mw = co40[\phi] * co41$			
3,4	speed control reduc- ing	Scaling of the gain of the speed controller with the factor from co37(φ) 0: off 1: on with the factor from co37 2: on with the factor from co43			

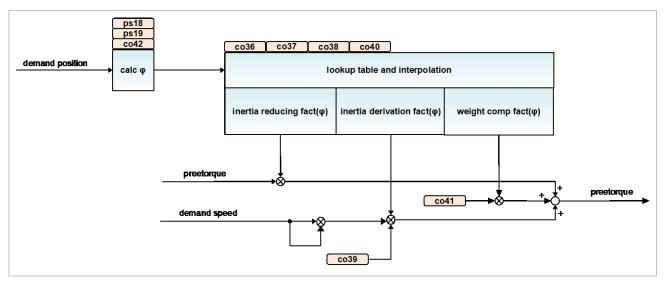


Figure 102: Not linear torque precontrol

6.3.8.4.2 Linear value range

The linear value range is activated with ps38 positioning module / round table mode position = 0 "off".

The limits of ps18 (CiA 0x607B [1]) min position range limit and ps19 (CiA 0x607B [2]) max position range limit are valid for the linear value range.

For positions below ps18 value [1] of the arrays is active. For positions above ps19 value [64] of the arrays is active.

In between there is interpolation.

6.3.8.4.3 Rotatory value range

The rotatory value range is activated with ps38 positioning module / round table mode position = 8 "on".

The periodic value range for the positions is defined with ps18 min position range limit and ps19 max position range limit. The positions of ps18 and ps19 in an imaginary circle are superimposed. Value [1] of the arrays is valid for the position with the value of ps18. Index [64] is not used in this operating mode.

With increasing position, after [63] it is interpolated to [1] again.

6.3.8.4.4 Internal value range

The angle φ is between these two limits of 0 to 2π . Referencing is possible with the homing function.

The minimum position range for non-linear torque pre-control is 2¹⁰ increments. If necessary, the position resolution can be adjusted with co03 position rotation scale (bit).

The angle ϕ can be corrected with co42 speed angle offset proportional to the speed setpoint.

There are two arrays, each with 64 entries which can preset a factor for $J(\phi)$ (co37 inertia reduce fact) and one for the first derivative of $J'(\phi)$ (co38 inertia derivation fact).

co37[1] corresponds to the angle φ = 0. co37[64] corresponds to the angle $\varphi = \frac{2\pi*63}{64}$

A compensation of a force can be made only as function of the angle ϕ with the 64 entries of co40 weight comp fact.

The precontrol is linearly interpolated from the table values in the time pattern of the speed controller.

Output of this function is the object pretorque which is directly accessible via the aa parameters. Scaling factor: 1024 -> rated motor torque

The inertia (virtual present at the motor) of motor + load is considered for the calculation of the precontrol. Load inertia after a gearbox must be converted accordingly. The calculated precontrol torque is the direct torque in the motor. A gear factor is considered with ps35/ps36.

The known precontrol can be reduced position-dependent via parameter co37 inertia reduce fact. A value of 255 (1.0) corresponds to the value for deactivated nonlinear precontrol.

The proportion of the first derivative of $J(\phi)$ is formed via the factor of co38 * co39.

The value of the maximum value of the first derivative of J (ϕ) in [kgcm²] is directly set in co39.

The data for the arrays co37, co38 and co40 can be determined from simulation data for the actual application.

For further information and tools, please contact KEB.

6.3.8.4.5 Scaling of the gain of the speed controller

The gain of the speed controller is also adapted as soon as values are entered into object co37 inertia reduce fact.

Simultaneously with the values for co37 also the inertia dr32 + cs17 must be set to the new max. values of the respective inertia.

There are 3 different modes, which depend on the parameterization co36 inertia reducing mode / speed control reducing.

co36	inertia reducing mode	inertia reducing mode				
Bit 34	speed control reducing					
Value	Name	Note				
0	off	The smallest value in array co37 inertia reduce fact determines the speed controller gain. The minimum value of the array is always used as a weakening factor for the speed controller.				
8	on with co37	The interpolated factor for the respective position from the values of co37 is taken as weakening factor for the speed controller				
16	on with co43	The interpolated factor for the respective position from the values of co43 is taken as weakening factor for the speed controller				

Another array is only available for scaling the speed controller with co43 speed control reduce fact. The same values must be entered in co43 and in co37 for the start. For optimization, separate adjustments can then be made for the speed controller depending on the application.

When the homing function is active, speed control reducing mode 0 is always used, i.e. the gain is always performed with the minimum value of array co37.

6.3.9 Speed setpoint deceleration

With absolutely correct precontrol, the drive would follow exactly the setpoint even without speed controller.

The speed measurement however causes also a deceleration of the actual speed value (scan time ec26, PT1-time ec27). The speed controller wants to control the decelerated actual speed equal to the speed setpoint and accelerates faster than required.

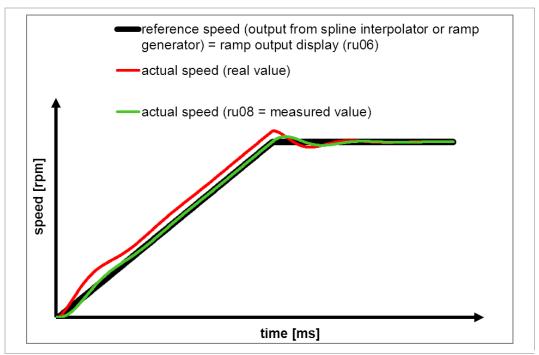


Figure 103: Overshoots in the speed setpoint

To avoid this effect, it is reasonable to decelerate the setpoint speed for the speed controller as well as the actual speed (Filter time + controller reciprocal of amplification time).

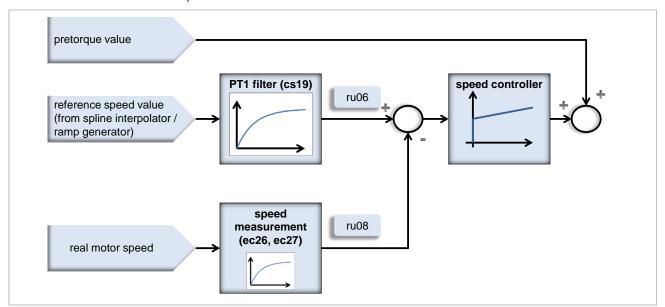


Figure 104: Speed setpoint deceleration

The value for cs19 ref speed PT1-time is calculated as follows:

with encoder	encoderless operation ((A)SCL)		
$cs19 = ec26 / 2 + ec27 + Td^{*1}$	$cs19 = ds27 + ds28 + Td^{*1}$		

^{*1} controller reciprocal of amplification time Td = 0.5...1.5ms

Thus for the speed controller the setpoint speed applies with the actual speed and the precontrol torque. Since both are decelerated the same, also the real speed and the setpoint speed of the ramp generator / spline interpolator are suitable.

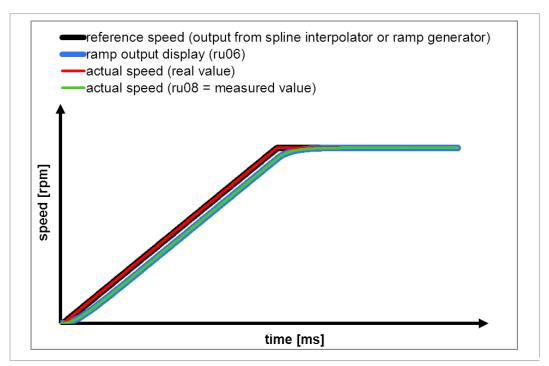


Figure 105: Optimal precontrol behaviour

The optimal behaviour, as shown in the figure above is only approximately reachable.

As shown in the figure for the structure of the position and speed control (Chapter 6.6) there are three Pt1 elements (cs18 ref position PT1 time, cs19 ref speed PT1 time and cs20 torque ref PT1-time) to adjust the three control circuits.

6.4 Torque limits

6.4.1 Physical torque limits

The torque limitation for the field weakening range is described in chapter 6.2.9.4 Torque limiting characteristic.

In the lower speed range, there is the possibility to adjust a limit via parameters of the stabilizing current, which operates independently of the motor type and controlmode.

Index	Id-Text	Name	Function
0x2422	ds34	stab term max. torque	Reduction of the maximum possible torque to small speeds. Particularly helpful in Hf operation. As a function of the speed, between ds37 and ds37 + (ds37- ds36)/2 (in % to rated torque, default value is 0 = Off).
0x2424	ds36	min. speed for stab. current	Speed limits (in % rated motor speed), which lower-
0x2425	ds37	max. speed for stab. current	ing the stabilisation current to 0 (value programmed in ds35).

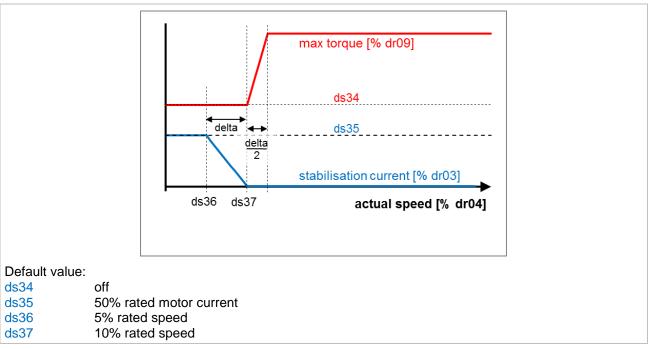


Figure 106: Torque limit in the lower speed range

6.4.2 application-dependent torque limits

In some applications it is not desired to set the maximum possible torque, but the application requires other process-related limits (e.g. protection of mechanical components).

This can be adjusted via parameters cs12...cs16 or via the CIA402 objects 6072h, 60E0h and 60E1h in 0.1% of the rated motor torque.

KEB In- dex	Id-Text	KEB Name	CIA 402 Ob- ject Index	CIA 402 Name
0x270C	cs12	absolute torque	0x6072	max torque
0x270D	cs13	torque limit mot for	0x60E0	positive torque limit value
0x270E	cs14	torque limit mot rev	0x60E1	negative torque limit value

The torque limiting characteristic, which is defined by the maximum current and available voltage, remains acitve as higher-level limit.

Index	Id-Text	Name	Function
0x270C	cs12	absolute torque	Max. torque (applies in all quadrants)
0x270D	cs13	torque limit mot. for	Torque limit mot., positive speed
0x270E	cs14	torque limit mot. rev	Torque limit mot., negative speed
UXZ/UE	CS14	torque ilmit mot. rev	-1: mot. forward => Value is accepted from cs13
			Torque limit gen., positive speed
0x270F	cs15	torque limit gen. for	-1: mot. forward => Value is accepted from cs13
		-	-2: mot. reverse => Value is accepted from cs14
			Torque limit gen., negative speed
0x2710	cs16	torque limit gen. rev	-1: gen. forward => Value is accepted from cs15
			-2: mot. forward => Value is accepted from cs13

An absolute limit can be defined with parameter cs12 absolute torque which should not be exceeded in the application and remains active in all operating ranges.

Parameter cs13 torque limit mot can be used if only one limit is required for all operating ranges (forward, reverse, motor and regenerative operation). Then the limits cs14...cs16 must be set to -1.

If different torque limits are required, enter these limits in parameters cs14...cs16 (= torque limit for different operating ranges).

A special torque limit can additionally be set for the emergency stop (fault reaction ramp) (=> Chapter 4.3.1.2.5 Error reaction/stop_function torque limit).

Example:

The control presets only the motor torque limit, regenerative parameterization shall be effective for positive and negative speed in cs15 torque limit gen. for.

```
cs12 = 150%, absolute limitation

cs13 (mot. forward) is preset via the bus address 270Eh
(value 1000 => 100% => Mn)

cs14 (mot. reverse) = -1: mot.forward = cs13

cs15 (gen. forward) = 90%

cs16 (gen. reverse) = -1: gen. forward = cs15
```

6.5 Position control

6.5.1 Position values

The following parameters contain position values:

Index	ld-Text	Name	Function
0x2C21	ru33	position actual value	Position value of the encoder after the gear factor ec24 / ec25
		encoder positions	Structure of position values of encoder 1
0x2C26	ru38	gearless pos [1]	Direct position value of the encoder 32bit without sign
		gearless pos high [2]	Upper 16bit of the direct position value
		gearless pos low [3]	Lower 16bit of the direct position value
0x2513	co19	target position	Set position setting
0x2E27	ps39	index position	Set positions for index positioning
0x2125	st37	demand position	Internal set position
0X2121	st33	position actual value	Position actual value
0x2124	st36	following error	Actual contouring error
0x2E0C	ps12	(CiA 0x6065) following error window	Admissible contouring error window
0x2E0E	ps14	(CiA 0x6067) positioning window	Target window
0x2E10	ps16	(CiA 0x607D [2]) max software position limit	Position setpoint limit
0x2E11	ps17	(CiA 0x607D [1]) min software position limit	r osition setpoint iiniit
0x2E12	ps18	(CiA 0x607B [1]) min position range limit	Position range limit
0x2E13	ps19	(CiA 0x607B [2]) max position range limit	1 Johnson range mine

The resolution of all position values except parameter ru33 position actual value and the structure ru38 encoder positions is defined by co03 position rot.scale (bit).

Parameters st33 position actual value and st37 demand position are influenced by the referencing and the position range limits (ps18 / p19).

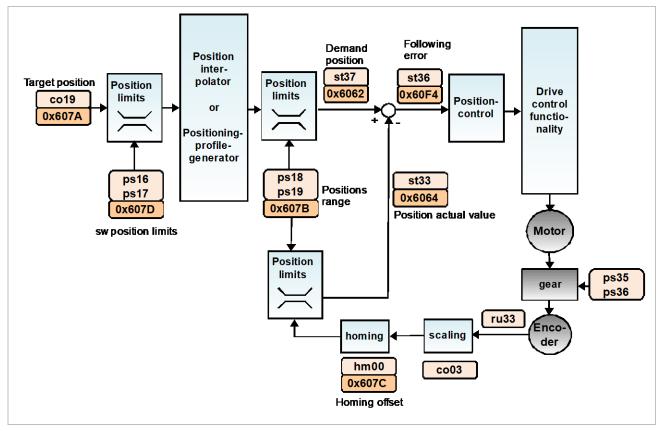


Figure 107: Position control overview

6.5.1.1 Resolution of the position values

The number of increments per position encoder rotation can be adjusted in co03 position rot.scale (bit).

Index	Id-Text	Name	Function
0x2503	co03	position rot.scale (bit)	Position resolution for a rotation of the position encoder

The position resolution for one revolution is adjusted here. The default value of 16 (bit) corresponds to a resolution of 65536 increments per revolution.

Since the objects for the positions all have a size of 32 bit, the maximum amount of whole revolutions result also from co03.

Maximum whole revolutions of the position encoder: $\pm 2^{(31 - co03)}$

6.5.1.2 Software position limits

The limits for the set position (ps16 (CiA 0x607D [2]) max software position limit and ps17 (CiA 0x607D [1]) min software position limit) are checked at the start of the positioning.

The positioning is not carried out if the set value is outside of these limits. In this case, no error or warning is issued.

If a continuous operation above the 32-bit value range is permitted (continuous positioning in one direction) ps16 (CiA 0x607D [2]) max software position limit must be set to the maximum value and ps17 to the minimum value.

The position limits are also monitored at active speed setpoint value vI20 / vI21. If the drive reaches the software end positions, the drive decelerates at the ramp and drives to speed 0.

ps16	(CiA 0x607D [2]) max software position limit	0x2E10
ps17	(CiA 0x607D [1]) min software position limit	0x2E11
Value	Meaning	
+(231 – 1)231	Set position limits	

6.5.1.3 Position range limits

The periodic value range for the positions is defined with ps18 (CiA 0x607B [1]) min position range limit and ps19 (CiA 0x607B [2]) max position range limit . The positions of ps18 and ps19 in an imaginary circle are superimposed.

The value range of the position set and actual values can be limited with the position range limits ps18 (CiA 0x607B [1]) min position range limit and ps19 (CiA 0x607B [2]) max position range limit . The internal set position st37 demand position overflows at the maximum value and starts again at the minimum value.

The new value is calculated as follows: st37 (after limit) = st37 (before limit) - maximum value + minimum value

Accordingly, the internal set position overflows when it falls below the minimum value.

The same applies to the actual position: If st33 position actual value exceeds the limit of ps19 the internal value of hm09 is changed by way that st33 starts again at the lower limit of ps18 (CiA 0x607B [1]) min position range limit . In the negative direction accordingly.

This position limit is displayed only in st33 and st37. All other positions are not affected by the limits.

6.5.1.4 Monitoring the value ranges

Some internal values are depending on different objects. Here you can't decide when programming an object, if the value is valid or not, since this can be decided only after setting of all relevant parameters. The individual parameter setting may not be rejected by invalid data.

With parameter ps22 it is possible to check if the internal values are all within a valid range after parameterisation of the position value range. The result of the internal standardizations is displayed in this parameter.

For a disturbance-free operation always 0: coherently should be displayed in ps22. $\hfill\Box$

Index	Id-Text	Name	Function
0x2E16	ps22	posi setup state	Monitoring of internal value ranges

ps22	posi setup state		
Bit	Name	Meaning	
0	position range too small	The position range (ps19 - ps18) has fallen below the minimum value of 1024.	
1	position range too large	The position range (ps19 – ps18) is higher than 231.	
2	kp position limited	The internal value of ps01 is currently internally limited. (dr04, co03, ps35, ps36)	
3	kp zero position limited	The internal value of ps02 is currently internally limited. (dr04, co03, ps35, ps36)	

6.5.2 Position control mode

ps00	position control mode	0x2E00	
Value	Meaning		
0 : off	Position controller is generally off.		
0.011	An existing position difference is deleted.		
	Position controller is activated by the operating mode (default)		
1 : auto	(co01 = -2 "jog mode" or 2 "velocity mode" or 9 "cyclic synchronous vel	ocity mode" or 10	
	"cyclic sync torque mode => Position controller off).		
2 : on	Position controller generally switched on		

The position controller is activated / deactivated by the operating modes in mode 1 "auto". This behaviour can be modified with ps00.

Example: it shall be operated only speed-controlled in operating mode 1 "profile position mode". Then ps00 must be set to 0 "off", since the position controller would be activated if the operating mode is set to 1 "auto".

6.5.3 Position controller

The position controller is active with the default setting of ps00 in the operating mode cyclic synchonous position mode and also in the profile positioning mode.

It is defined with the following parameters:

Index	ld-Text	Name	Function
0x2E00	ps00	position control mode	General activation of the position controller
0x2E01	ps01	KP position controller	Proportional gain of the position controller
0x2E02	ps02	KP zero speed position ctrl	Additional proportional gain of the position controller at standstill (speed setpoint= 0)
0x2E03	ps03	KP speed limit reduction	Setpoint-dependent reduction of the KP position control- ler
0x2E04	ps04	Speed limit for ps03	Speed value for KP reduction by the value of ps03
0x2E0A	ps10	position control limit %	Limitation of the output signal of the position controller in % of rated motor speed
0x2504	co04	position source	Selection of the source for the position signal
0x2E23	ps35	feed forward speed num	Definition of the gear factor between position encoder
0x2E24	ps36	feed forward speed denum	and motor

Since the controlled system has an integral behavior, the position controller is a pure P controller.

The gain factor KP of ps01 KP position controller and ps02 KP zero speed position ctrl is standardized by way that an angle difference of one revolution of the position encoder generates the specified speed setpoint for the position encoder specified in Kp.

Example gain factor Kp:

With an angular deviation of 5° at the position encoder and a Kp of 2000 rpm the output value of the position controller is = 5/360*2000 rpm = 27.8 rpm.

The total value of the setpoint speed (ru06) is added from the speed profile of the spline interpolator or the profile generator and the output value of the position controller.

The gear factor (ps35 / ps36) is considered for the conversion into motor speed setpoint.

The output of the position controller is limited by ps10 position control limit %.

ps10	position ctrl limit %	0x2E0A
Value	Meaning	
0.01000.0%	Limitation of the output signal of the position controller in % of	rated motor speed

The limitation of the position controller refers to the motor speed. It is no longer converted with the gear factor.

6.5.3.1 Standard position controller

ps01	KP position controller	0x2E01
Value	Meaning	
0.06500.0 rpm	Gain factor	

ps01 KP position controller determines proportional gain of the position controller.

Since the ideal setting for the target approach (i.e. at low speeds at the end of the positioning profile) is often too hard for the positioning process with high speed, the gain can be weakened with ps03 / ps04.

ps03	KP speed limit reduction %	0x2E03
Value	Meaning	
0.0100.0%	Setpoint-dependent reduction of the KP position controller	

ps04	Speed limit for ps03	0x2E04
Value	Meaning	
0128000 rpm	Speed value for KP reduction by the value of ps03	

The weakening depends on the setpoint speed, which is calculated from the positioning profile. The setpoint speed, which is the output of the position controller, is not considered.

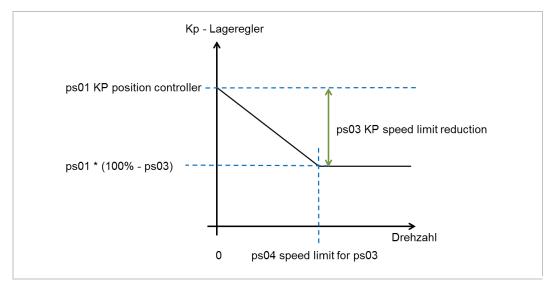


Figure 108: KP reduction in the position controller

The gain is weakened from speed 0 to the level of ps04 speed limit for ps03 by the value set in ps03 KP speed limit reduction.

That means: If ps03 is 75% and ps04 = 1000 rpm, the gain (the Kp from ps01) is reduced from 100% to 25% (weakened by 75%) from profile speed 0 to 1000 rpm.

6.5.3.2 Standstill position control

ps02	KP zero speed position ctrl	0x2E02
Value	Meaning	
0.06500.0 rpm	Additional gain factor at setpoint speed 0	

If a very high position rigidity is only required at standstill, the gain (Kp) of the position controller can be increased with ps02 KP zero speed position ctrl at a profile setpoint speed of 0 rpm.

6.5.3.3 Position controller source

The source for the position information is determined with co04 position source:

co04	position source	0x2504
Value	Name	Meaning
0	channel A	Encoder channel A (terminal X3A) (motor encoder at speed control with encoder)
1	channel B	Encoder channel B (terminal X3B)
2	estimated position	Estimated position from the motor model

The position control can be done - switchable with co04 position source - via encoder at the motor or via second encoder or the estimated position of the motor model.

6.5.3.4 Position controller gear factor

A gear ratio between this second encoder and drive is compensated with ps35 and ps36. This gear factor primarily affects the precontrol in operating modes with active position controller.

The position controller output (standard position controller and standstill position controller) is also converted with the gear factor. That means: the output value of the position controller is 200 rpm with an angular deviation of 1/10 revolution at the position encoder and Kp of 2000 rpm. If the motor rotates 5 times faster than the position encoder due to a gear, the output of the position controller is multiplied with 5, the position controller output value for the set motor speed is 1000 rpm.

ps35	feed forward speed num	0x2E23
Value	Meaning	
+(230 – 1)230	Gear factor numerator	

ps36	feed forward speed denom	0x2E24
Value	Meaning	
1 +(230 – 1)	Gear factor denominator	_

6.5.4 Following error

The following error st36 following error can be monitored in all operating modes with active position controller.

If the limit of ps12 (CiA 0x6065) following error window is exceeded and additionally the preset time in ps13 (CiA 0x6066) following error time out has elapsed, bit 13 "following error" is set in the status word.

6.6 Structure position / speed control

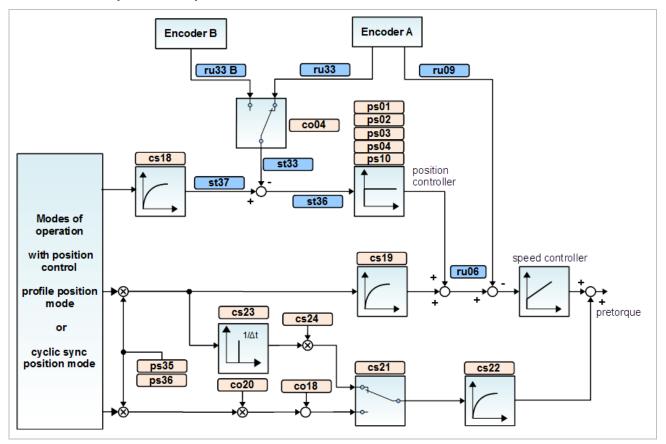


Figure 109: Structure position / speed control

7 I/O functions

7.1 Digital Inputs

7.1.1 Overview

The F6 / S6 inverters have the following digital inputs:

Num- ber	Description
8	Digital inputs on the terminal block X2A of the control board (I1I8)
2	Control type K: Two separate STO inputs on terminal block X2B for modulation release/driver supply Control type A or P: Additional safety-relevant inputs on terminal block X2B (depending on the used safety module)
4	Virtual inputs (IAID, are fixed assigned to the virtual outputs (OAOD) ID can only be set via the di parameters
2	"controlword" inputs: If programmed accordingly, bits 13 and 12 of the digital input state ru18 can be set via the controlword.

The internal image of the digital inputs can be read either from the terminal block or alternatively preset via object di02 dig. input ext. src.

Additionally the inputs can be set to 0 or 1.

The selection of the source for the internal state of the digital inputs occurs via object di01 dig. input src. sel..

The result of the selection can be inverted via di00 dig. input logic.

The state of the terminal block or virtual inputs is displayed in ru41 dig. input terminal state, ru18 dig. input state displays the state of the inputs after passing the input block (i.e. after filtering, inverting, bus setting, etc.).

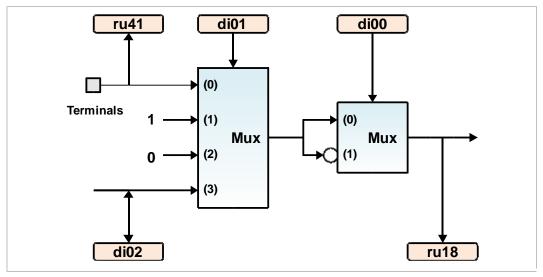


Figure 110: Digital inputs block diagram

7.1.2 Terminal state

The terminal state can be read out via the objects ru18 and ru41.

Index	Id-Text	Name	Function
0x2C12	ru18	dig. input state	Display of the software internal input state after passing the input block including the controlword inputs.
0x2C28	ru41	dig. input terminal state	Display of the status of the hardware or virtual input terminal. The controlword inputs are not displayed.

The meaning of the single bits in ru41 dig. input terminal state is defined as follows:

ru41		dig. inpu	lig. input terminal state 0x2C29		
Value	Bit	Name	Function		
1	0	I 1	Hardware input terminal Î1		
2	1	12	Hardware input terminal I2		
4	2	13	Hardware input terminal I3		
8	3	14	Hardware input terminal I4		
16	4	15	Hardware input terminal I5		
32	5	16	Hardware input terminal I6		
64	6	17	Hardware input terminal I7		
128	7	18	Hardware input terminal I8		
256	8	IA	Virtual input (of virtual output OA)		
512	9	IB	Virtual input (of virtual output OB)		
1024	10	IC	Virtual input (of virtual output OC)		
2048	11	ID	Virtual input (can only be set via the di parameters)		
16384	14	STO-1	Channel 1 from the safety module		
32768	15	STO-2	Channel 2 from the safety module		

1 means the input is on high level (24V).

The meaning of the single bits in ru18 dig. input state is defined as follow	The meaning of the	single bits in	ru18 dia, inpu	it state is	defined as follows
--	--------------------	----------------	----------------	-------------	--------------------

ru18		dig. inpu	ut state 0x2C12		
Value	Bit	Name	Function	·	
1	0	l1	Input state I1		
2	1	12	Input state I2		
4	2	13	Input state I3		
8	3	14	Input state I4		
16	4	15	Input state I5		
32	5	16	Input state I6		
64	6	17	Input state I7		
128	7	18	Input state I8		
256	8	IA	Input state IA		
512	9	IB	Input state IB		
1024	10	IC	Input state IC		
2048	11	ID	Input state ID (can only be set by the	ne input block)	
4096	12	CW 1	Controlword input 1		
8192	13	CW 2	Controlword input 2		
16384	14	STO-1	Channel 1 from the safety module Can not be changed by the input		
32768	15	STO-2	Channel 2 from the safety module	block	

¹ means that the state of the input is set to active at the output of the processing block of the digital inputs.

7.1.3 Selection of the input source

The source for the internal terminal state can be selected via the object di01 dig. input src. sel.

Index	Id-Text	Name	Function
0x3201	di01	dig. input src. sel.	Selection of the internal terminal state source

It can be selected from the 4 sources below for inputs I1...I8 and IA...ID. The terminal block is always used as source for inputs STO-1 and STO-2.

The selection of the source is done for each input via 2 successive bits in di01 dig. input src. sel. The meaning of this source selection is identical for each input.

di01	dig. inp	ut src. sel.			0x3201
Bit	Func- tion	Value	Plaintext	Function	
0, 1 2, 3	I1 src	0	term.	Input state is transferred from the termin	al strip X2A
4, 5 6, 7	I2 src	1	on	Input state is 1	
8, 9 10,	I4 src	2	off	Input state is 0	
15 src 11 16 src 12, 17 src 13 14, 15	I6 src I7 src	ext. src. Input state is transferred from di02			
17,		0	term.	Input state is transferred from the softwa	re output
16 19,	IA src	65536	on	Input state is 1	
18,	IB src	131072	off	Input state is 0	
21, 20	IC src	196608	ext. src.	Input state is transferred from di02	
		0	term.	reserved, no associated software output	available
23,	ID oro	4194304	on	Input state is 1	
22	ID src	8388608	off	Input state is 0	
		12582912	ext. src.	Input state is transferred from di02	

7.1.4 External setting of the input state

Object di02 dig. input ext. src can also be used as source for the internal input state (except ST0 inputs).

Index	Id-Text	Name	Function
0x3202	di02	dig. input ext. src	External setting of the input state

The meaning of the bits in di02 dig. input ext. src corresponds to ru18 dig. input state.

The value of di02 is stored **not** non-volatile.

7.1.5 Inversion of the digital input state

The internal terminal state can be inverted via object di00 dig. input logic. The state after the inversion can be read out via the object ru18 dig. input state.

Index	Id-Text	Name	Function
0x3200	di00	dig. input logic	Inversion of the digital input state
0x2C12	ru18	dig. input state	Internal image of the digital inputs (after processing such as e.g. inversion)

Only the inputs I1..I8 and IA..ID can be inverted. An inversion of the STO inputs is not possible.

7.1.6 Filter for the digital inputs

The digital inputs I1 ... I8 can be filtered via the object di04digital noise filter.

Index	Id-Text	Name	Function
0x3204	di04	digital noise filter	Filter time for the digital inputs in 0.5ms resolution

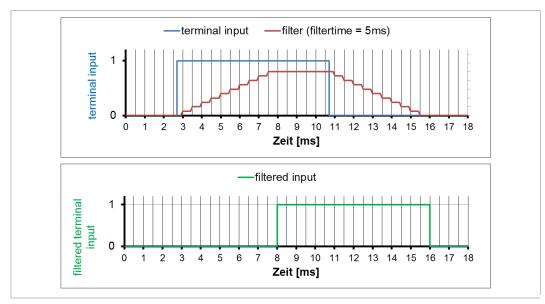


Figure 111: Filter of the digital inputs

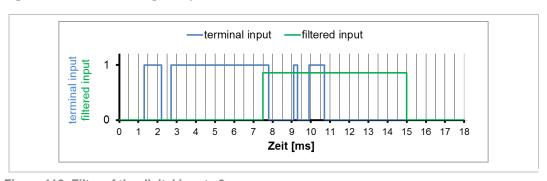


Figure 112: Filter of the digital inputs 2

7.1.7 Controlword inputs CW 1 / CW 2

In addition to the terminals and the software outputs, inputs can also be set via co00 (CiA 0x6040) controlword or address 0x6040.

This allows functions to be activated (e.g. brake chopper control) which can otherwise only be activated via digital inputs.

7.1.7.1 Configuration of the inputs

di28 defines the controlword bits on which the status of the controlword inputs depends on.

di28[1] di28[2]		cw input 1 cw input 2	0x321C
Bit	Value	Plaintext	Note
0	1	copy bit 11 to cw input x	
1	2	copy bit 12 to cw input x	If one of the selected controlword bits is set, the corresponding controlword input (cw 1 or 2) is
2	4	copy bit 13 to cw input x	set
3	8	copy bit 14 to cw input x	
415		reserved	without function

7.1.7.2 Display of the inputs

there are 2 new bits in the display of ru18 and in the selection tables of the digital input functions for which the use of the controlword inputs seems reasonable: 12 / 13 controlword input x => CW x.

For functions for which the use of the controlword inputs is not recommended, "reserved" is displayed instead of CW 1 / CW 2. If this bit is used, the corresponding function is also executed.

ru18		dig. inpu	t state	0x2C12		
Value	Bit	Name	Function			
1	0	l1	Input state I1			
2	1	12	Input state I2			
4	2	13	Input state I3			
8	3	14	Input state I4			
16	4	15	Input state I5			
32	5	16	Input state I6			
64	6	17	Input state I7			
128	7	18	Input state I8			
256	8	IA	Input state IA			
512	9	IB	Input state IB			
1024	10	IC	Input state IC			
2048	11	ID	Input state ID			
4096	12	CW 1	Input state controlword input 1	rd input 1		
8192	13	CW 2	Input state controlword input 2 controlword inputs			
16384	14	STO-1	Channel 1 from the safety module Can not be changed by the input			
32768	15	STO-2	Channel 2 from the safety module	block		

7.1.7.3 Application of the inputs

For the following input functions, it may be useful to activate them via the control word:

	Input functions					
ds61	DC braking source	di16	forward input			
pn30	prg. error source	di17	reverse input			
pn31	enable braking trans. source	di20	invert input			
pn46	fault reaction end src	an70	PID reset I term			
of05	trigger source	an71	deactivate PID			
ps44	immediately input	an73	fade out input			
hm14	home mode source					

Example: DC braking should be able to be activated by a controlword bit. Bit 12 shall be used.

- Configuration of the controlword input:
 - in di28[1] set bit 1: copy bit 12 to cw input 1
 - the assignment of the controlword input to the function, activation of the DC braking, must be made in ds61

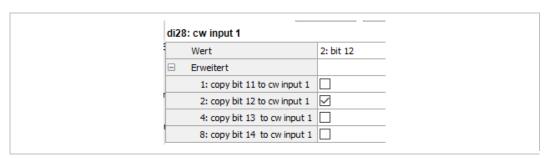


Figure 113: di28 cw input 1

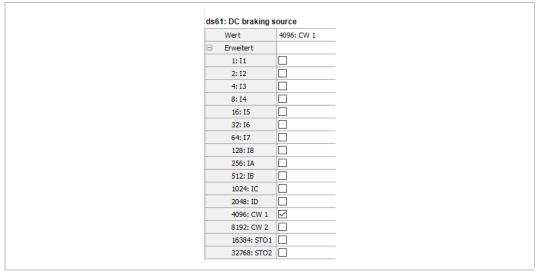


Figure 114: ds61: cw input 1

Now the DC braking can be activated by setting bit 12 in the controlword (0x2500 or 0x6040).

A CAUTION

If bus communication is interrupted, the last status of the controlword inputs is retained. This can cause an unwanted permanent function activation

The option deactivate braking transitor in error case in connection with suitable parameterization of the watchdog error can provide a remedy.

7.1.8 Overview of the evaluation of digital inputs

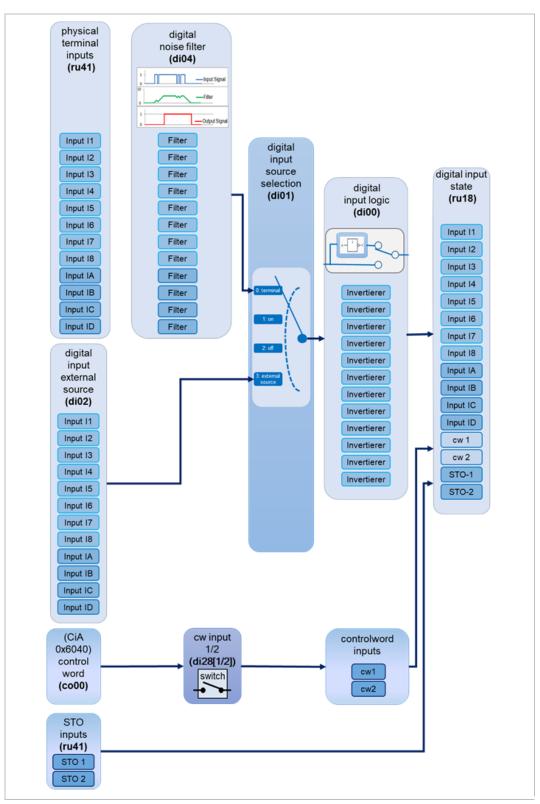


Figure 115: Structure: Evaltuation of the digital input status

7.1.9 Functions of the digital inputs

The control word is the central control object in the X6 unit series. Alternatively or in combination, operation via digital inputs is also possible. Parameters di10 to di21 are available to this.

If the parameters co28 / co29 are not used to link the controlword and digital input setting, the processing sequence is as follows:

- Processing of the process data
- Evaluation of the digital inputs
- Access via asynchronous communication (e.g. diagnostic interface or SDOs)
- Processing of the combination logic (7.1.9.1.2 Combined setting via controlword and digital inputs

If several inputs are selected for a function, these are OR operated.

Index	Id-Text	Name	Function	
0x320A	di10	RUN input	With active RUN input, value 0x000b is written into the internal control word (=> leads only to status <i>operation enabled</i> at co32 Bit 3 = 0)	
0x320B	di11	RST input	The selected input influences bit 7: "fault reset" of the control- word internal co31	
0x320C	di12	CA input	The input selected as CA input influences the bits of the control-	
0x320D	di13	CA mask	word internal selected by CA mask.	
0x320E	di14	CB input	The input selected as CB input influences the bits of the control-	
0x320F	di15	CB mask	word internal selected by CB mask.	
0x3210	di16	forward input	Rotation setting via digital inputs	
0x3211	di17	reverse input	Rotation setting via digital inputs	
0x3212	di18	stop input	If defined and input active, the setpoint speed from the vI parameters is set to zero	
0x3213	di19	start posi/homing input	The selected input influences bit 4:"op mode spec" of the controlword internal co31	
0x3214	di20	invert input	If set, the speed setpoint is inverted in operating modes 1 and 2.	
0x3215	di21	index input	Actual index. Results from the state of the inputs, which are selected with di21 index input for the index setting.	
0x3216	di22	index noise filter	Common filter for all inputs which form together the index	
0x3217	di23	halt input	The selected input influences bit 8: halt in the internal controlword.	

7.1.9.1 Controlword functions via the digital inputs

All controlword functions can also be activated with digital inputs by di10... di15 and di18, di19:

- specific bits (di10 RUN input, di11 RST input, di19 start posi/homing input, di23 halt input)
- any bits of the controlword via di12..di15. (The mask objects di13 CA mask and di15 CB mask are used to select which bits are preset via the digital inputs. The inputs, which determine the state for the selected bits are selected with di12 CA input and di14 CB input).

The status of the digital inputs is taken from parameter ru18 digital input state. The status of the controlword bits influenced via digital inputs is visible in in di29 digital input controlword.

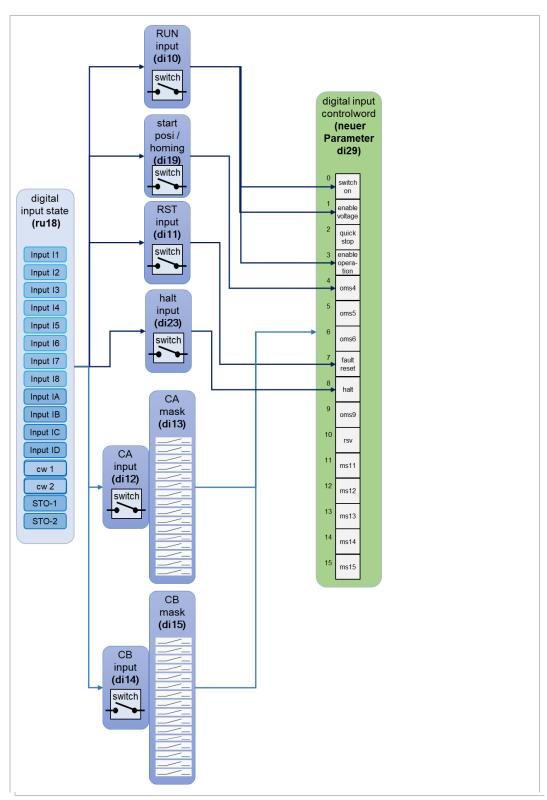


Figure 116: digital input controlword

The control via the fieldbus controlword (0x2500 or 0x0x6040) and the digital inputs can also be combined by parameters co28 combined controlword mask and co29 source connect type.

7.1.9.1.1 Setting via digital inputs

co30 controlword mask defines which bits are written to the internal controlword c031 by writing to co00 (CiA 0x6040) controlword (Adr. 0x2500) or the controlword in the pr parameters (Adr. 0x6040). "1" for one bit in co30 causes that the respective bit is transferred into the internal controlword (co31 controlword internal). The default value for co30 is 0xFFFF, thus all bits of the controlword parameters are written into the internal controlword.

The second source for the internal controlword are the bits that are set or reset by digital inputs. The bits are set when the corresponding input is active and reset when the corresponding input is inactive.

If a bit is defined by a digital input, it should no longer be influenced by the control-word parameters, unless you use the combinatorics by co28 / co29. Parameter co30 should contain a "0" for all bits which are preset via the digital inputs.

If you have selected functions in the internal controlword with digital inputs, it is reasonable to block these functions for access via the process data. Bits in the internal controlword can be affected simultaneously from both sources.

However, unintentional intermediate states can occur then, since both sources (controlword parameters and digital inputs) are sequentially processed and written into the internal controlword.

7.1.9.1.2 Combined setting via controlword and digital inputs

2 parameters are used to define the combination logic:

Index	Sub	Text	Name	Function
0,0510	0,2540	combined control-	Number of programmable masks	
0x251C	13	co28	word mask	Mask 13

Index	Sub	Text	Name	Function
	0		active connection	Number of sub-indices
0x251D	13	co29	source connection definition	Selection of connection types and activation sources for mask 13

co28 combined controlword mask determines which bits of co31 internal controlword are evaluated by linking the "communication" controlword (co00 or 0x6040) and the "digital input" controlword (controlword combination block in figure 1).

In order to be able to select different connection types for different controlword bits, co28 is created as an array with 3 elements.

[&]quot;1" means the bit is generated by the "combination block".

co29 source connection definition determines how the bits can be connected (function type 0 definition, function type 1 definition = 0..3).

Additionally it is defined with which controlword bits it is possible to switch between the connection types (function nr selector = 0..3).

co29	source connection definition 0x251D				
Bit	Function	Value / pla	aintext	Description	
		0	only co00 bits	only controlword	
04	function type 0	1	only digital inputs	only digital input cont	rolword
04	definition	2	co00 AND digital inputs	Controlword AND dig	ital input CW
		3	co00 OR digital inputs	Controlword OR digita	al input CW
		0	only co00 bits	only controlword	
59	function type 1	32	only digital inputs	only digital input cont	rolword
59	definition	64	co00 AND digital inputs	Controlword AND dig	ital input CW
		96	co00 OR digital inputs	Controlword OR digita	al input CW
		0	connection type 0 active	connection type 0 alw	ays active.
2022	function nr se-	1048576	choose type with bit 11	Choose connection ty of the "preliminary co	
2022	lector	2097152	choose type with bit 12	Choose connection ty of the "preliminary co	
		3145728	choose type with bit 13	Choose connection ty of the "preliminary co	

Depending on the parameterization of co29 source connection definition => function nr selector, bits 11..13 of the "preliminary controlword" can be used to switch between the different connection types at runtime.

Alternatively, only one connection type can be used.

In this case, "the manufacturer specific" bits of the controlword remain usable for other extensions.

NOTICE

The bits defined by the combined controlword mask are serially evaluated. That means: a connection defined in combined controlword mask [1] is overwritten by another connection defined in combined controlword mask [2] or [3].

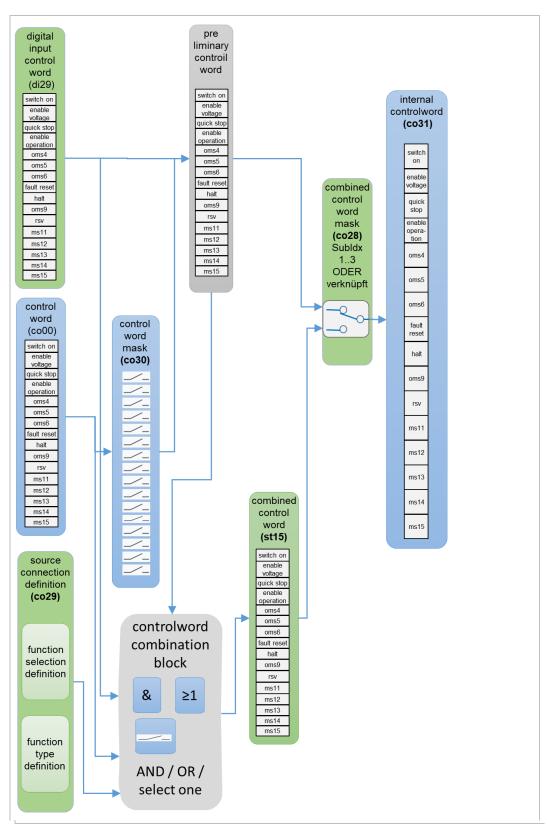


Figure 117: digital input controlword

7.1.9.1.3 Run

With di10 RUN input it can be defined, which input shall be used as release signal (control release) for the drive. The bits 0 (switch on), 1 (enable voltage) and 3 (enable operation) are set by the **RUN input**. That means, with active input, bits 0,1 and 3 (0x000bh) are set in the internal controlword. They are written to zero when the input is not active.

If bit 3 is parameterized with value 0 in co32 (enable operation mode = state), setting the RUN input leads to the status **operation enabled**, if the drive is ready for modulation.

7.1.9.1.4 Reset

Which input shall cause an error reset can be defined with di11 RST input.

Bit 7 (0x0080h) fault reset is set in the internal controlword via active **RST input**. When the RST input is inactive, bit 7 is set to zero.

7.1.9.1.5 Operation mode specific Bit 4

Which input sets or resets bit 4 in the internal controlword is defined with di19 start posi/homing input. Bit 4 (0x0010h) is set in the internal controlword via an active **start posi/homing input**. Bit 4 is set to zero with inactive stop input.

Depending on the operating mode, the bit serves e.g. as start command for the positioning or approach to reference point.

7.1.9.1.6 Controlword bit 8 halt

Which input sets or resets bit 8 "halt" in the internal controlword can be defined with di23 halt input.

Bit 8 (0x0100h) is set in the internal controlword via active **halt input**. Bit 8 is set to zero with inactive **halt input**.

The function of the "halt" bit depends on the operating mode.

7.1.9.1.7 Controlword mask CA / CB

Any controlword bits can be set with parameters di12...di15.

The mask objects di13 CA mask and di15 CB mask are used to select which bits are preset via the digital inputs.

The inputs, which determine the state (set = 1 / inactive = 0) for the selected bits are selected with di12 CA input and di14 CB input.

7.1.9.1.8 Examples

The first example shows the control of controlword bits directly via digital inputs without further influences.

The second example is a more complex control, combined of process data (0x2500 or 0x6040) and digital inputs.

7.1.9.1.8.1 Control of reset (bit 7) and brake (bit 15) via digital inputs

Brake control should be done via the digital input I1.

Reset should be done via the digital input I2.

The reset of co31 controlword internal shall be determined via the controlword parameters.

Reset via I2:

di11 RST input = 2 (setting/resetting of bit 7 fault reset via I2)

Brake control via I1:

di13 CA mask = 8000h (bit 15 of co31 is set via input) di12 CA input = 1 (setting/resetting of bit 15 via I1)

Controlword bits 7 and 15 only via digital inputs:

co30 controlword mask = 7F7Fh

7.1.9.1.8.2 Example (influence of bits 2, 3 and 4)

3 controlword bits shall be set by the "controlword combination block":

- The quickstop bit shall always be set to zero alternatively by co00 or digital input I1, thus triggering quickstop.
- 2. During a certain phase of the application cycle, positioning should **also** be started by digital input **I2**, but during the remaining time the signal should only be able to be set via the controlword (0x2500 or 0x6040).
- 3. The "enable Operation" bit should be set by default via digital input **I3** and via the controlword (0x2500 or 0x6040). However, the control should be able to deactivate the digital input influence.

1.) Quickstop:

There is no explicit di parameter for the quickstop bit. The generally usable CA mask must be used.

Input is I1 => di12 CA input = 1: I1

Bit 2 shall be influenced => di13 CA mask = 0004h: /QS

Bit 2 shall be evaluated by the "combination block":

co28 combined controlword mask [1] = 0004h: /QS

If digital input = 0, or "communication" controlword bit = 0, the bit in co31 controlword internal shall also become 0 => AND operation

co29 source connection definition[1] => function type definition 0 = 2: co00 AND digital inputs

This function shall be permanently active: no selection/switching signal necessary co29 source connection definition[1] => function nr selector = "0: connection type 1 always active" => connection type 1 always active.

2.) OMS 4 (new set-point / start Posi)

There is an explicit di parameter for bit 4: di19 start posi/homing input Input is I2 => di19 start posi/homing input = "2: I2"

Bit 4 shall be evaluated by the "combination block":

co28 combined controlword mask [2] = "16: op mode spec 4"

By default only the "communication" controlword determines the value of the bit: co29 source connection definition[2] => function type definition 0 = "0: only co00 bits"

It shall be switched between the different types of OMS 4 setting via the controlword bit 11. From "exclusively via the communication controlword" (function type definition 0) to "via digital inputs **or** controlword" (function type definition 1).

co29 source connection definition[2] => function type definition 1 = "3: co00 OR digital inputs"

co29 source connection definition[2] => function nr selector = 1: choose type with bit 11

If bit 11 is zero, bit 4 in co31 is set via co00, if bit 11 is "one", the status of bit 4 in co31 is equal to the status of the digital input.

3.) Enable operation

There is no explicit di parameter for the enable operation bit. The generally usable CB mask must be used.

Input is I3 => di14 CB input = 8: I3

Bit 3 shall be influenced => di15 CB mask = 0008h: EO

Bit 3 shall be evaluated by the "combination block:

co28 combined controlword mask [3] = 8: enable operation

By default, bit 3 shall be set in co31 controlword internal, if either digital input I3 is set, or the bit in the controlword (0x2500 or 0x6040) is set.

co29 source connection definition[3] => function type definition 0 = 3: Controlword OR DigitalInput

The control shall be able to deactivate the digital input influence:

co29 source connection definition[3] => function type definition 1 = 0: only co00 bits co29 source connection definition[3] => function nr selector = 2: choose type with bit 12

If bit 12 is zero, bit 3 is set in co31 via digital input I3 or the corresponding bit in co00; if bit 12 is "one", the status of bit 3 in co31 is only dependent on co00.

7.1.9.2 Rotation setting via digital inputs

7.1.9.2.1 Invert input

An input, which causes an inversion (sign reversal) of the setpoint speed from the VL parameters for operating modes 1 and 2 can be defined with di20 invert input.

Setting the input causes inversion.

The setpoint with the actual valid sign is displayed in ru05 set value display.

7.1.9.2.2 Halt

di18 vl zero speed input defines which input sets the setpoint speed of the vl parameters to zero.

The index speed setting and the output of the position controller are not set to zero.

7.1.9.2.3 Forward / Reverse

Two inputs, which determine the direction of rotation can be defined with di16 forward input and di16 reverse input.

The setting of the setpoint speed in the VL parameters must always be positive since the direction of rotation is determined by the digital inputs. A negative VL speed setpoint leads to the setpoint speed 0.

The direction of rotation (positive / forward) is selected if the **forward input** is active. The positive speed setpoint is displayed in ru05.

Reverse direction of rotation is selected (negative / reverse), if only the **reverse input** is active. The VL speed setpoint is inverted and the actual valid negative setpoint is displayed in ru05.

If both, the **forward input** and the **reverse input** are set, the forward direction of rotation (positive / forward) has priority.

If none of the two inputs is set, the setpoint speed is set to zero. However, automatic modulation switching off does not take place.

This function works only if the setpoint speed setting occurs via the vI parameters. The forward / reverse inputs have no function for speed setting via the index function in the ps parameters.

7.1.9.3 Index setting via digital inputs

7.1.9.3.1 Index calculation

The inputs which determine the index (e.g. for position or speed selection) can be selected with di21 index input.

The index is calculated binary coded from the digital inputs selected in di21.

An active input is "1", an inactive input "0".

The lower-order digital input generates also the lower-order bit in the index calculation.

Example for index calculation:

Inputs I1, I3 and I5 are selected in di21 for index selection:

$$di21 = 21: 11 + 13 + 15$$

Thereby input I1 receives the value 1, input I3 the value 2 and input I5 the value 4.

Inputs I1 and I3 are set:

Index =
$$1 + 2 = 3$$

Inputs I3 and I5 are set:

Index =
$$2 + 4 = 6$$

The actual index can be read out in ru58 actual index.

7.1.9.3.2 Index filter

A filter time for the index calculation can be set in parameter di22 index noise filter.

di22	index noise filter	0x3216
Value	Meaning	
0.02000.0 ms	Filter time of the index value in 0.5 ms resolution	

Value 0 means that the calculated index value from the digital inputs is not filtered and immediately accepted as valid index. This can cause problems if the digital inputs are not set exactly at the same time.

If a filter time is entered, a new index is only accepted as valid index if it remains constant for the adjusted time.

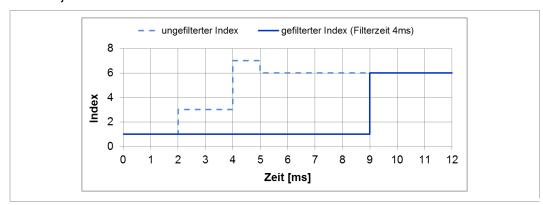


Figure 118: Example 1 for the index filter

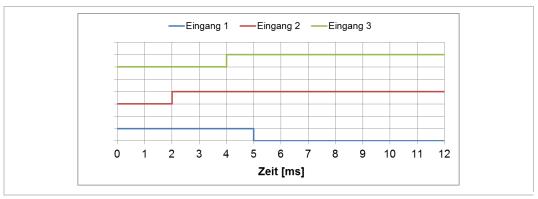


Figure 119: Example 2 for the index filter

After the unfiltered index has remained constant for the filter time (4ms), it is accepted as a valid index.

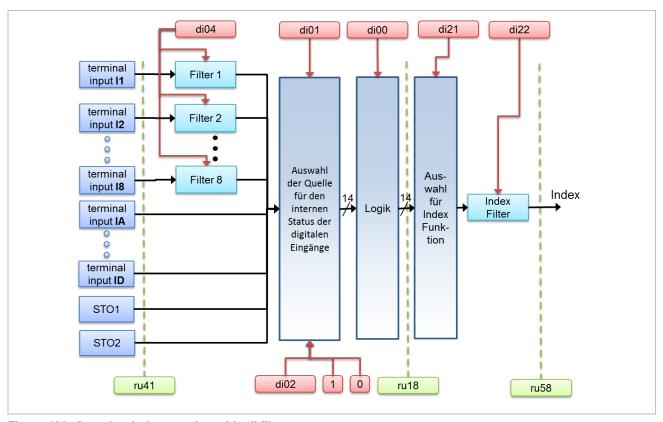


Figure 120: Overview index creation with all filters

7.1.10 Overview of the input functions

Index	Id-Text	Name	Function
0x321E	di30	I1 input function	
0x321F	di31	I2 input function	
0x3220	di32	I3 input function	
0x3221	di33	I4 input function	
0x3222	di34	I5 input function	
0x3223	di35	I6 input function	An aversion can be obtained in these read necessarias
0x3224	di36	17 input function	An overview can be obtained in these read parameters, which functions are triggered / influenced by the respective
0x3225	di37	18 input function	input.
0x3226	di38	IA input function	input.
0x3227	di39	IB input function	
0x3228	di40	IC input function	
0x3229	di41	ID input function	
0x322A	di42	STO1 input function	
0x322B	di43	STO2 input function	

Several functions can be assigned to an input. Then the parameter value is the sum of the associated functions of an input.

The values in the input function parameters have the following meaning:

	di30di45	Ix / STOx / CW x inp	out function Subindex 1	0x321E322B
Bit	Value	Plaintext	Function	
031	0	not defined	No function is assigned to the input	
0	1	Run	di10: Run	
1	2	RST	di11: RST	
2	4	CA	di12: CA mask	
3	8	СВ	di14: CB mask	
4	16	FOR	di16: FOR	
5	32	REV	di17: REV	
6	64	Stop	di18: Stop	
7	128	OS4	di19: Start Posi, Start Homing	
8	256	inv	di20: invert	
9	512	index	di21: index	
10	1024	neg. lim	hm06: negative limit switch	
11	2048	pos. lim	hm07: positive limit switch	
12	4096	home	hm08: home switch	For a description of the
13	8192	home src	hm14: home mode source	For a description of the input function refer to
14	16384	imm	ps44: immediately input	the respective parame-
15	32768	error	pn30: prg error source	ter which they are as-
16	65536	brk. res.	pn31: enable braking trans. source	signed to.
17	131072	end src.	pn46: fault reaction end src	digitied to:
18	262144	trigger	of05: trigger source	
19	524288	HALT	di23: HALT	
20	1048576	start recipe	ud03: start recipe	
21	2097152	start dc-braking	ds61: start dc-braking	
22	4194304	activate jog mode	cm34: activate jog mode	
23	8388608	jog positive	cm35: jog positive	
24	16777216	jog negative	cm36: jog negative	
25	33554432	act. jog speed 2	cm37: activate jog speed 2	
26	67108864	jog step mode	cm38: jog step mode	
27	134217728	jog inc MOP	cm31: jog inc MOP	
28	268435456	jog dec MOP	cm32: jog dec MOP	
29	536870912	jog reset MOP	cm33: jog reset MOP	

di30d	di45	Ix / STOx / CW x input function Subindex 2		0x321E322B
Bit	Value	Plaintext	Function	
031	0	not defined	No function is assigned to the input	
0	1	PID reset I term	an70: PID reset integral term input	For a description of the
1	2	deactivate PID	an71: PID deactivation input	input function refer to
2	4	fade out input	an73: PID fade out input	the respective parame- ter which they are as- signed to.

7.2 Digital outputs

The F6 / S6 drives have a different number of digital outputs depending on the control type.

7.2.1 Control type K (COMPACT)

Number	Description	Notes
4	0104	Allocated on the terminal blocks X2A and X2B of the control board
3	OAOC	Software outputs (connected with the digital inputs IA-IC)
1	Relay	1 relay output (specification => installation manual of the control board)

7.2.2 Control type A (APPLICATION)

Number	Description	Notes
2	0102	2 digital outputs (specification => installation manual of the control board)
3	OAOC	Software outputs (connected with the digital inputs IA-IC)
1	Relay	1 relay output (specification => installation manual of the control board)

When using control type A, the inverter always contains a safety module. This safety module has its own digital output functions.

The description of these outputs must be taken from the manual for the safety module.

7.2.3 Control type P (Pro)

Number	Description	Notes
2	O1O2	2 digital outputs (specification => installation manual of the control board)
3	OAOC	Software outputs (connected with the digital inputs IA-IC)
1	Relay	1 Relay output (Specification => Installation manual of the control board) In the case of control variants with positive-driven relays, the control depends on the safety module and cannot be influenced via the do parameters. (de13 ctrl hardware type -> hw version = 5 or 6 => + safety relay)

For a more detailed description of the digital outputs, please refer to the installation manual

7.2.4 Functional overview

The digital outputs can be generated from the image of the comparator level or alternatively preset via the object do10 dig. output ext. src.

The value of do10 is stored **not** non-volatile.

Additionally the outputs can be set to 0 or 1. The selection of the source for the state of the output terminals occurs via object do12 dig. output src. sel.

The result of the selection can be inverted then via do11 dig. out logic.

The result of the comparator level can be read in ru19 internal output state. The state of the outputs is available in ru20.

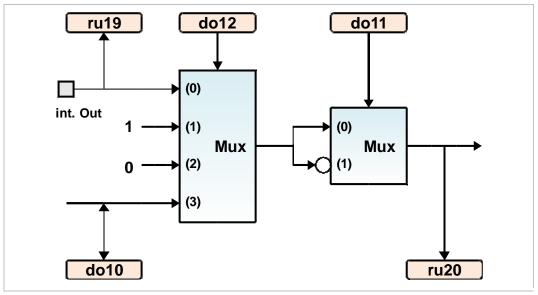


Figure 121: Digital outputs block diagram

7.2.5 Display internal digital outputs

The result of the internal digital outputs (= result of the comparator level) can be read out via object ru19.

Index	Id-Text	Name	Function
0x2C27	ru19	internal output state	Display internal digital outputs

The meening	a of the individu	ial hita in the	a internal autou	t ototo io	defined as follows:
The meaning	ı oı tne maiviat	iai bits in the	a internal outbu	ii state is	defined as follows.

ru19	internal output state 0x2C13					
Bit	Value	Name	Function			
0	1	01	Digital outputs O1O2			
1	2	02	Digital outputs 0102			
2	4	O3	Digital autoute 02 04 (anly available for central type K)			
3	8	O4	Digital outputs O3O4 (only available for control type K)			
4	16	OA	Virtual output (virtual input IA)			
5	32	OB	Virtual output (virtual input IB)			
6	64	OC	Virtual output (virtual input IC)			
7	128	Relay	Relay output (specification => installation manual of the control board)			
,	7 126 Relay		not available for all boards			
815			reserved			

¹ means the output is set.

7.2.6 Source selection for the digital outputs

The source for the state of the digital outputs can be selected via the object do12.

Index	Id-Text	Name	Function
0x260C	do12	dig. output src. sel.	Source selection of the output state

It can be selected from the 4 sources below for the outputs O1-O4 (control type K) or O1-O2 (control type A), as well as OA-OC and the relay.

The source selection occurs for each output via 2 successive bits in do12.

Section Value Plaintext Function Output state is transferred from the comparator level Output state is 1	do12	dig. output s	rc. sel.		0x260C	
O1 source	Bit	Function	Value	Plaintext	Function	
2 off Output state is 0 3 ext. src. Output state is transferred from do10 23 O2 source 4 on Output state is transferred from the comparator level 4 on Output state is 0 12 ext. src. Output state is transferred from do10 45 O3 source 5 O3 source 6 On Output state is 1 12 ext. src. Output state is transferred from the comparator level 16 on Output state is 1 17 Output state is 1 18 Off Output state is 1 19 Output state is 1 10 Output state is 1 11 Output state is 1 12 Output state is transferred from do10 10 Output state is transferred from do10 11 Output state is 1 12 Output state is 1 13 Output state is transferred from do10 14 Output state is transferred from do10 15 Output state is transferred from do10 16 Output state is transferred from do10 17 Output state is transferred from do10 18 Output state is transferred from do10 19 Output state is transferred from do10 10 Output state is 1 11 Output state is 1 12 Output state is 1 12 Output state is 1 13 Output state is 1 14 Output state is 1 15 Output state is 1 16 Output state is 1 17 Output state is 1 18 Output state is 1			0	flag	Output state is transferred from the comparator level	
3 ext. src. Output state is transferred from do10 23 O2 source 4 on Output state is transferred from the comparator level 4 on Output state is 1 8 off Output state is 0 12 ext. src. Output state is transferred from do10 45 O3 source 6 on Output state is 1 32 off Output state is 1 32 off Output state is 0 48 ext. src. Output state is transferred from do10 6 of lag Output state is transferred from do10 6 of lag Output state is transferred from do10 6 of lag Output state is transferred from do10 6 of lag Output state is transferred from the comparator level 6 on Output state is 0 128 off Output state is 1 128 off Output state is transferred from do10 109 ext. src. Output state is transferred from do10 100 flag Output state is transferred from the comparator level 100 flag Output state is transferred from do10 100 flag Output state is transferred from the comparator level 100 flag Output state is transferred from do10 11011 OB source 11012 OC source 11013 OC source 11014 OC source 11015 OC source 11016 of Output state is transferred from do10 11017 OUTPUT state is 1 11018 OC source 11019 OUTPUT state is 1	01	O1 source	1	on	Output state is 1	
23 O2 source O			2	off	Output state is 0	
23 O2 source			3	ext. src.	Output state is transferred from do10	
8 off Output state is 0 12 ext. src. Output state is transferred from do10 45 O3 source 16 on Output state is transferred from the comparator level 16 on Output state is 1 32 off Output state is 0 48 ext. src. Output state is transferred from do10 0 flag Output state is transferred from do10 10 flag Output state is 1 128 off Output state is 1 128 off Output state is 0 192 ext. src. Output state is transferred from do10 10 flag Output state is 1 10 flag Output state is 1 10 flag Output state is transferred from do10 10 flag Output state is transferred from the comparator level 10 flag Output state is 1 10 flag Output state is 0 10 flag Output state is 1 10 flag Output state is 1 10 flag Output state is transferred from do10 10 flag Output state is transferred from do10 10 flag Output state is transferred from the comparator level 10 flag Output state is 1 10 flag Output state is transferred from do10 10 flag Output state is transferred from do10 10 flag Output state is transferred from the comparator level 10 flag Output state is transferred from do10 11 flag Output state is transferred from do10 12 flag Output state is transferred from do10 13 flag Output state is transferred from do10 14 flag Output state is transferred from do10 15 flag Output state is transferred from do10 16 flag Output state is transferred from do10 17 flag Output state is transferred from do10 18 flag Output state is transferred from do10 19 flag Output state is transferred from do10 10 flag Output state is transferred from do10 10 flag Output state is transferred from do10			0	flag	Output state is transferred from the comparator level	
12	23	O2 source	4	on	Output state is 1	
45 O3 source O			8	off	Output state is 0	
45 O3 source 16 on Output state is 1 32 off Output state is 0 48 ext. src. Output state is transferred from do10 67 O4 source 0 flag Output state is 1 128 off Output state is 0 Output state is 1 192 ext. src. Output state is transferred from do10 0 flag Output state is transferred from the comparator level 256 on Output state is 1 512 off Output state is transferred from do10 0 flag Output state is transferred from the comparator level 1011 OB source 0 flag Output state is transferred from the comparator level 1011 OB source 0 flag Output state is transferred from do10 1213 OC source 0 flag Output state is transferred from the comparator level 1213 OC source 4096 on Output state is 1 1213 OC source 0 flag Output state is tr			12	ext. src.	Output state is transferred from do10	
32			0	flag	Output state is transferred from the comparator level	
48 ext. src. Output state is transferred from do10 0 flag Output state is transferred from the comparator level 64 on Output state is 1 128 off Output state is 0 192 ext. src. Output state is transferred from do10 89 OA source OA source OA source OB source OA sourc	45	O3 source	16	on	Output state is 1	
67 O4 source O			32	off	Output state is 0	
67 O4 source 64 on Output state is 1 128 off Output state is transferred from do10 192 ext. src. Output state is transferred from the comparator level 256 on Output state is transferred from the comparator level 256 on Output state is 0 768 ext. src. Output state is transferred from do10 1011 OB source 0 flag Output state is transferred from the comparator level 1024 on Output state is 1 2048 off Output state is 1 2048 off Output state is transferred from do10 0 flag Output state is transferred from do10 0 flag Output state is transferred from do10 0 flag Output state is transferred from the comparator level 4096 on Output state is 1 8192 off Output state is 1 8192 off Output state is transferred from do10 0 flag Output state is transferred from the comparator level			48	ext. src.	Output state is transferred from do10	
67 O4 source 64 on Output state is 1 128 off Output state is 0 192 ext. src. Output state is transferred from do10 0 flag Output state is transferred from the comparator level 256 on Output state is 1 512 off Output state is 0 768 ext. src. Output state is transferred from do10 0 flag Output state is transferred from do10 1011 OB source 0 flag Output state is transferred from the comparator level 1024 on Output state is 1 2048 off Output state is 0 3072 ext. src. Output state is transferred from do10 Output state is transferred from do10 Output state is transferred from the comparator level Output state is transferred from the comparator level 1213 OC source Output state is 1 Output state is 1 Output state is transferred from do10 Output state is transferred from the comparator level			0	flag	Output state is transferred from the comparator level	
89 OA source OA s	67	O4 source	64	on		
89 OA source			128	off	Output state is 0	
89 OA source OA s			192	ext. src.	Output state is transferred from do10	
S9 OA source 512 off 768 ext. src. Output state is transferred from do10 0 flag Output state is transferred from the comparator level 1011 OB source 1011 OB source 1012 OB source 1013 OC source 1013 OC source 1014 OC source 1015 OC source 1016 1017 OC source 1017 OC source 1018 OC source 1019 OC sou			0	flag	Output state is transferred from the comparator level	
1011 OB source Source Course	0 0	04	256	on	Output state is 1	
1011 OB source O	89	OA source	512	off	Output state is 0	
1011 OB source 1024 on Output state is 1 2048 off Output state is 0 3072 ext. src. Output state is transferred from do10 1213 OC source 1213 OC source 1214 OC source 1215 OC source 1316384 on Output state is transferred from the comparator level 1417 OUTput state is 1 1518 OC source 1519 OC source 16.384 on Output state is transferred from do10 16.384 on Output state is transferred from the comparator level 16.384 on Output state is 1			768	ext. src.	Output state is transferred from do10	
2048 off Output state is 0 3072 ext. src. Output state is transferred from do10 1213 OC source O flag Output state is transferred from the comparator level 4096 on Output state is 1 8192 off Output state is 0 12288 ext. src. Output state is transferred from do10 O flag Output state is transferred from the comparator level O flag Output state is transferred from the comparator level			0	flag	Output state is transferred from the comparator level	
3072 ext. src. Output state is transferred from do10 0 flag Output state is transferred from the comparator level 1213 OC source 4096 on Output state is 1 8192 off Output state is 0 12288 ext. src. Output state is transferred from do10 0 flag Output state is transferred from the comparator level Relais 16384 on Output state is 1	1011	OB source	1024	on	Output state is 1	
1213 OC source 0 flag Output state is transferred from the comparator level 4096 on Output state is 1 8192 off Output state is 0 12288 ext. src. Output state is transferred from do10 0 flag Output state is transferred from the comparator level			2048	off	Output state is 0	
1213 OC source 4096 on Output state is 1 8192 off Output state is 0 12288 ext. src. Output state is transferred from do10 0 flag Output state is transferred from the comparator level			3072	ext. src.	Output state is transferred from do10	
8192 off Output state is 0 12288 ext. src. Output state is transferred from do10 0 flag Output state is transferred from the comparator level			0	flag	Output state is transferred from the comparator level	
12288 ext. src. Output state is transferred from do10 0 flag Output state is transferred from the comparator level Relais 16384 on Output state is 1	1213	OC source	4096	on	Output state is 1	
0 flag Output state is transferred from the comparator level			8192	off	Output state is 0	
Relais 16384 on Output state is 1			12288	ext. src.	Output state is transferred from do10	
Relais 16384 on Output state is 1			0	flag	Output state is transferred from the comparator level	
	1415	Relais	16384	on	Output state is 1	
source 32768 off Output state is 0	1415	source	32768	off		
49152 ext. src. Output state is transferred from do10			49152	ext. src.	Output state is transferred from do10	
1631 reserved	1631					

7.2.7 External setting of the output state

Object do10 can also be used as source for the state of the digital outputs.

Index	Id-Text	Name	Function
0x260A	do10	dig. output ext. source	External setting of the terminal state

The meaning of the bits in do10 corresponds to ru19.

The value of do10 is not stored non-volatile

7.2.8 Output signal generation

7.2.8.1 Function blocks

Index	Id-Text	Name	Function	
0x2601	do01	flag operand A	Comparison operand A	
0x2602	do02	flag operand B	Comparison operand B	
0x2603	do03	flag operator mode	Linkage/comparison type of operands (> / < / logical / absolute value / etc.)	
0x2604	do05	flag level 1	Comparison operand with 4 decimal places	
0x2605	do06	flag level 2	32 Bit Integer Comparison operand	
0x2606	do07	flag hyst. operand B	Hysteresis for operand comparison	
0x2607	do08	filter time flags	Filter for the output signal	

The comparator level is generated from max. 8 programmable function blocks which output as result 0 (FALSE) or 1 (TRUE).

The output of the results of these function blocks are called "flags" and can be read out via object ru74 unfiltered flags state.

A filter is series-connected to each function block. The results of these filters can be read out via object ru21 dig. output flags.

7.2.8.2 Function block linkage

Index	Id-Text	Name	Function	
0x260D	do13	select flag connection	Selection of the flags to be linked to "connected flags"	
0x260E	do14	invert flags for connection	optional inverting of the flags that are to be linked to "connected flags"	
0x2612	do018 AND operation for connected flags Selection if the flags are input to an OR of linkage.		Selection if the flags are input to an OR or an AND linkage.	

As an intermediate level, the 8 "flags" (F1..F8) can be linked to max. 4 "connected flags" (CF1..CF4).

The type of linkage is selected in do18 AND operation for connected flags. The 8 "flags" plus the 4 "connected flags" can be read out in parameter ru88 complete flags state.

7.2.8.3	Output	signal

Index	Id-Text	Name	Function
0x2614 0x261B	do20 do27	select flag O1 OD select flag OAOC select flag relais	Selection of the flags or "connected flags" that are to be linked to generate an output signal
0x2612	do19	AND operation for output	Selection if the flags are input to an OR or an AND linkage for the generation of the outputs

For each hardware output (O1..O4, relay) and each software output (OA..OC), parameters do20...do27 select flag Ox can be used to select the flags / connected flags wherefrom the output signal shall be generated.

Before the linkage, the flags for the respective output can be inverted with parameters do28[1..8] invert flags for output.

The type of linkage (OR / AND) is set with do19 AND operation for output.

The resulting internal output state is displayed in ru19 internal output state.

7.2.8.4 Structure overview

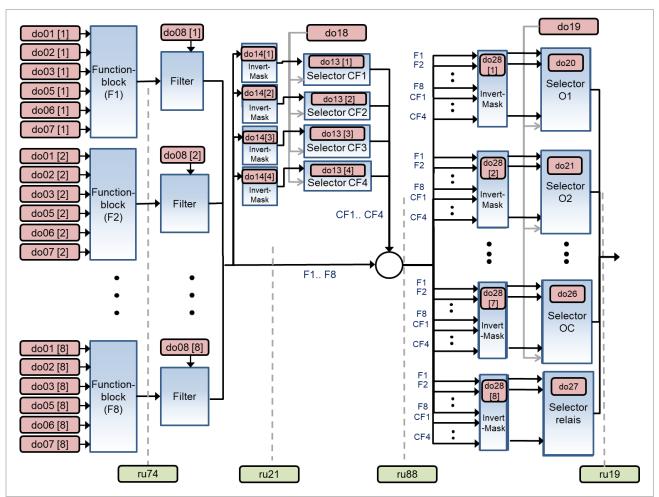


Figure 122: Comparator level

7.2.9 Function blocks

7.2.9.1 Number of function blocks

The calculation of the function block output value is time-consuming. For runtime optimisation, the number of calculated function blocks can be reduced to the required number.

do15	Number of flags	0x260F			
Value	Function				
0	no function blocks are calculated				
18	1 8 function blocks are generated. Function blocks that are not calculated lead to 0 for the respective flag F1F8	o the value			

7.2.9.2 Operand selection

Each function block can execute a comparison operation with two operands. The operands are selected via do01 and do02.

Index	Subidx	Id-Text	Name	Function
0x2601	18	do01	flag operand A	Operand A for comparison operation
0x2602	18	do02	flag operand B	Operand B for comparison operation

The following operands can be selected in do01 flag operand A and do02 flag operand B. Depending on the used control type (A / K / P) or the used device type (F6 or S6), some setting options are not available. (e.g. comparisons with encoder speeds with control cards that do not allow an encoder connection)

do01	flag operand A 0x2601		
do02	flag operand B	0x2602	
Value	Plaintext	Note	
0	reserved		
1	exception state (ru01)	Error code	
2	reserved		
3	warning state (ru03)	Display of the highest priority warning message	
4	reserved		
5	set value display (ru05)	Set speed in velocity mode (before ramp) [in rpm]	
6	ramp out value (ru87)	Set speed [in rpm] after ramp/spline and PT1 element does not include the position controller influence	
7	act. frequency (ru07)	Stator frequency [in Hz]	
8	act. value (ru08)	Actual speed for speed control (measured or estimated) [in rpm]	
9	act. enc. speed (ru09)	Actual speed measured by the encoder [in rpm] selected for speed control (co05)	
10	act. app. curr. (ru10)	Apparent current [in A]	
11	act. active curr. (ru11)	Active current [in A]	
12	act. reactive curr. (ru12)	Magnetizing current [in A]	
13	peak app. curr. (ru13)	Peak value of the apparent current [in A]	
14	act. Uic voltage (ru14)	DC link (DC circuit) – voltage [in V]	
15	peak Uic voltage (ru15)	Peak value of the DC link voltage [in V]	
16	act. output voltage (ru16)	Output voltage [in V]	
17	modulation grade (ru17)	Modulation grade [in %]	
18	dig. input state (ru18)	Internal image of the digital inputs (after processing)	
19	Internal output state (ru19)	State of the internal digital outputs	
20	dig. output state (ru20)	State of the outputs (at the end of the processing block)	

do01	flag operand A	0x2601	
do01	flag operand B	0x2602	
Value	Plaintext	Note	
2122	reserved	THOSE	
23	reference torque (ru23)	Set torque [in % rated torque]	
24	actual torque (ru24)	Actual torque [in % rated torque]	
25	int. data 1 (aa34)	Internal date 1 (only for test operation)	
26	int. data 1 (da37)	Internal date 2 (only for test operation)	
27	level 1 (do05)	Comparison level with 4 decimal places	
28	level 2 (do06)	Comparison value without decimal places	
29	statemachine display (st12)	State of the state machine	
30	controlword (co00)	Value of the control word	
31	system counter (st35)	Continuous 250us counter	
32	heatsink temperature 1 (ru25[1])	Heatsink temperature [in °C]	
34	drive temperature (ru28)	Motor temperature [in °C] (only when using a KTY sensor	
35	statusword (st00)	Value of the status word	
36	position actual value (st33)	Actual position according CIA402 standard	
37	following error (st36)	Contouring error according CIA402 standard	
38	OL2 counter (ru27)	Short-term overload level [in %]	
39	OL counter (ru29)	Long-term effective inverter load [in %]	
40	motor prot counter (ru32)	Motor protection counter [in %]	
41	positive torque limit (ru50)	resulting positive torque limit	
42	negative torque limit (ru51)	resulting negative torque limit	
43	eff motor load (ru57)	Long-term load of the motor [in %]	
44	act switch freq (ru72)	Switching frequency [in kHz]	
45	I / ImaxOL2 (ru73)	Motor current [in % short-time current limit]	
46	AN1 value display (ru42)	Analog input 1 before input level [in %]	
47	AN1 after gain display (ru43)	Analog input 1 after input level [in %]	
48	AN2 value display (ru44)	Analog input 2 before input level [in %]	
49	AN2 after gain display (ru45) Analog input 2 after input level [in %]		
5051	reserved		
52	analog REF display (ru48)	Value of the REF signal [in %]	
53	analog AUX display (ru49)	Value of the AUX signal [in %]	
54	Homing done	Run to the homing point is done	
56	diff. speed [1] (ru83)	ru84 – ru08 [in rpm]	
57	diff. speed [2] (ru83)	Ramp output value (internal) – ru08 [in rpm]	
58	diff. speed [3] (ru83)	smoothed ramp output value (internal) - ru08 [in rpm]	
59	brake control state (st04)	Status of the brake control	
60	heatsink PWM (ud54)	PWM signal for valve control of a liquid cooler	
61	actual speed PT1 (ru85)	filtered actual speed (ru08 after is39 time) [in rpm]	
62	diff. speed [4] (ru83)	ru06 – ru08 [in rpm]	
63	blockade status (pn87[6])	Status of the blockade handling	
64	motor cooling PWM out state	PWM signal for valve control of a liquid cooler	
65	ramp out display (ru06)	Setpoint speed [in rpm] after ramp/spline, PT1 element and position controller handle (input variable of the speed controller)	
66	ru09 (0x2C09 / A)	Encoder speed channel A	
67	ru09 (0x4C09 / B)	Encoder speed channel B	
68	timer value ru89[1]	Current value Timer 1	
69	timer value ru89[2]	Current value Timer 2	

7.2.9.3 Operators

The operator to be used is selected in do03 flag operator mode. Additionally the sign of the operands can be influenced.

Index	Subidx	Id-Text	Name	Function
0x2603	18	do03	flag operator mode	Operator (comparison operation >, <, =, etc.)

The bits in do03flag operator mode have the following meanings:

do03	flag operator mode				0x2603
Bit	Function	Value	Plaintext	Notes	
03	Selection operator	0	>=	A greater or equal B	
		1	<=	A less or equal than B	
		2	=	A equal B	
		3	AND	A AND B / TRUE, , if min 1 bit is set	
		4	OR	A OR B / TRUE, if min 1 bit is set	
		5	!=	A unequal B	
		615	reserved		
45	Type operand A	0	Parameter	Sign of operand A from selected ope	rand
		16	unsigned	Operand A unsigned	
		32	signed	Operand A signed	
		48	absolute	Operand A absolute	
67	Type operand B	0	Parameter	Sign of operand B from selected ope	rand
		64	unsigned	Operand B unsigned	
		128	signed	Operand B signed	
		192	absolute	Operand B absolute	

7.2.9.4 Comparison level

In selecting the operands, different process variables and also operands level 1 and level 2 can be selected.

Index	Subidx	Id-Text	Name	Function
0x2605	18	do05	flag level 1	Comparison level 1 (resolution 0.0001)
0x2606	18	do06	flag level 2	Comparison level 2 (resolution 1)

In order to compare the values, there are the parameters do05 flag level1 (4 decimal places) and do06 flag level2 (no decimal places).

flag level 1 is for all comparisons when a higher resolution is required. flag level 2 is for all values that use the full value range (e.g. positions).

The comparison is made in the corresponding unit which displays the parameter in COMBIVIS.

7.2.9.5 Example

Example: The apparent current ru10 is displayed in COMBIVIS with a resolution of (0.01).

If a comparison with a current level of e.g. 1.25 A shall be executed, then 1.2500 must be adjusted in level 1 (do05).

With level 2, there is only comparison with integer current values possible (1A, 2A, 3A, etc.).

If operator 3 "AND" or 4 "OR" is selected, the internal value is compared with the assigned bit mask without re-standardization.

A linkage with flag level 1 is not reasonable for AND and OR.

Example:

Flag 1 (funktion block) shall be set if one of the inputs I1, I2 or I3 is set.

do01 flag operand A [1] = 18 "dig. input state (ru18)"

do02 do01 flag operand B [1] = 28 "level 2 (do06)"

do06 flag level 2 [1] = 7

do03 flag operator mode [1] = 3 "AND"

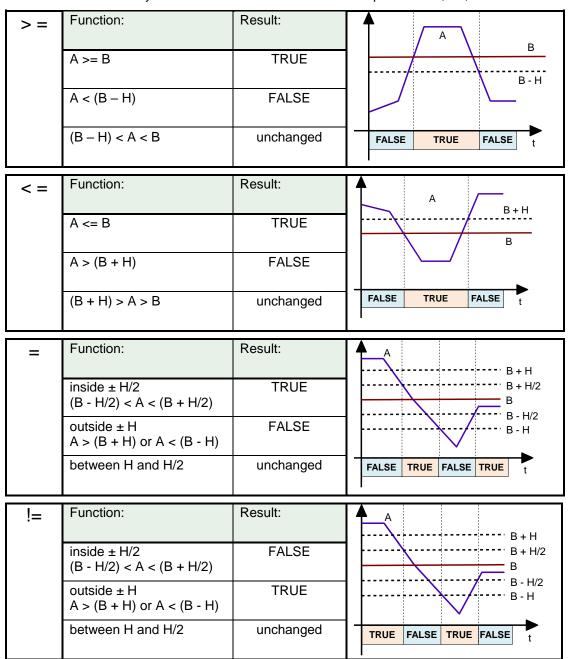
The inverter forms the logical link (value ru18) AND (value flag level 2).

For example, if input I2 is active, the result of the AND operation is:

2 (0010 binary) AND 7 (0111 binary) = 2 (0010 binary)

The flag is set if the result is unequal to 0.

If an output shall only be set if several conditions are fulfilled simultaneously, the single flags must be assigned AND-operated to an output (programmable with do19 AND operation for output and the select flag parameters do20...do27)


7.2.9.6 Hysteresis

A hysteresis for comparison operations can be preset in do07.

Index	Subidx	Id-Text	Name	Function
0x2607	18	do07	flag hysteresis operand B	Hysteresis

The function of the hysteresis is depending on the selected operator. No hysteresis function is possible for the operations AND or OR.

The hysteresis is defined as follows for the operators >=, <=, = and !=:

7.2.9.7 Filter

A filter can be series-connected for each comparison operation.

Index	Subidx	Id-Text	Name	Function
0x2608	18	do08	filter time flags	Filter for the comparison operation

The filter is incremented if the output of the comparator level is = TRUE, at False it is decremented.

Switching the filter output occurs only at counter reading = 0 (clearing the filter output) or at counter reading = adjusted filter time (setting the filter output).

Times are rounded to ms.

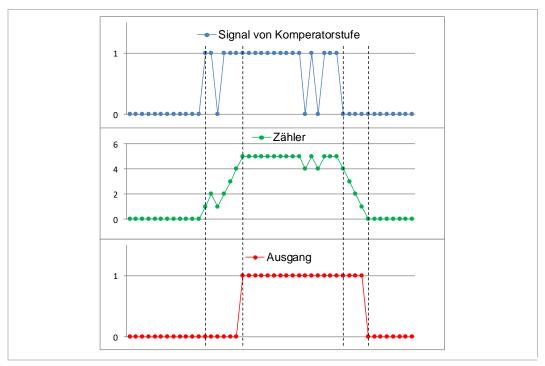


Figure 123: Filter for the comparison operation

7.2.10 Generation of the linked function blocks

The maximum number of connected function blocks ("connected flags") is set in do16 number of connected flags.

In order to optimise the runtime, the number of "connected flags" can be reduced to the ones that are really required.

do16	number of connected flags 0x2610			
Value	Function			
0	no linked function blocks are calculated			
14	1 4 linked function blocks are generated. Non-generated linked function blocks lead to the value 0 for the respective flag CF1CF4			

A "connected flag" is defined with a subindex in the array do13

do13		select fl	t flag connection 0x260D		
Bit	Valu	Name	Function		
	е				
0	1	F1	Result function block 1	In do13, it is determined from which function	
1	2	F2	Result function block 2	blocks linked function blocks (connected flags) shall be generated.	
				Max. 4 linked function blocks (Cl sible	F1CF4) are pos-
7	8	F4	Result function block 8	The type of linkage is set in do18	3

With do18 it is selected whether the flags shall be OR or AND linked

do18		AND operation for connected flags 0x2612		0x2612		
Bit	Value	Name	Name Function			
0	0	CF1	Flags selected for CF1 are OR linked			
	1	CFI	Flags selected for CF1 are AND linked			
3	0	CF4	Flags selected for CF4 are OR linked			
3	8	CF4	Flags selected for CF4 are AND linked			

7.2.11 Generation of the internal outputs

7.2.11.1 Parameter overview

The internal outputs (= outputs of the comparator level) can be used as source for generation of the output state.

It can be determined with do19 AND operation for output whether the flags should be linked OR (standard) or AND (adjustable with do19).

Which flags are used to generate an internal output is parameterized via the objects do20...do27.

Index	Id-Text	Name	Function
0x2613	do19	AND operation for output	Selection of the link type for output O1OD
0x2614	do20	select flag O1	Selection of the flags for internal output O1
0x2615	do21	select flag O2	Selection of the flags for internal output O2
0x2616	do22	select flag O3	Selection of the flags for internal output O3
0x2617	do23	select flag O4	Selection of the flags for internal output O4
0x2618	do24	select flag OA	Selection of the flags for internal output OA
0x2619	do25	select flag OB	Selection of the flags for internal output OB
0x261A	do26	select flag OC	Selection of the flags for internal output OC
0x261B	do27	select flag Relais	Selection of the flags for the relay
0x261C	do28	invert flags for output	Selection of which flags are to be inverted before linking

The selection which flags are to be inverted for the generation of the respective output signal is made in the array do28.

In do28[1] the selection is made for output O1, in do28[2] for output O2 etc. up to do28[8] for the relay output (see also the overview in Figure 122: Comparator levelFigure 121: Digital outputs block diagram)

do28		invert fla	ags for output	t 0x261C	
Bit	Valu	Name	Function		
	е				
0	1	F1	Invert flag 1		
1	2	F2	Invert flag 2	If several function lected for one outp	
				flags are OR-conn set if at least one f	ected (output is
7	128	F8	Invert flag 8	AND-connected (c	output is set if all
8	256	CF1	invert linked function blocks 1		,
				The type of conne do19.	ction is defined in
11	2048	CF4	invert linked function blocks 4		

The meaning of the values is identical for do20...do27.

do20	.do27	select fl	ag O1OC, Relais	0x26140x261B
Bit	Valu	Name	Function	
	е			
0	1	F1	Result function block 1	
1	2	F2	Result function block 2	If several function blocks are selected for one output, the selected flags are
				OR-connected (output is set if at least one flag is set) or AND-connected
7	128	F8	Result function block 8	(output is set if all assigned flags are set).
8	256	CF1	Result linked function blocks 1	,
				The type of connection is defined in do19.
11	2048	CF4	Result linked function blocks 4	

do19		AND oper	ration for output	0x2613	
Bit	Value	Name	Function		
0	0	01	Selected flags for O1 are AND linked		
U	1	O1	Selected flags for O1 are AND linked		
1	0	O2	Selected flags for O2 are OR linked		
I	2	02	Selected flags for O2 are AND linked		
2	0	O3	Selected flags for O3 are OR linked		
2	4	03	Selected flags for O3 are AND linked		
3	0	O4	Selected flags for O4 are OR linked		
3	8		Selected flags for O4 are AND linked		
4	0	OA	Selected flags for OA are OR linked		
4	16	UA	Selected flags for OA are AND linked		
5	0	OB	Selected flags for OB are OR linked		
3	32	ОВ	Selected flags for OB are AND linked		
6	0	00	Selected flags for OC are OR linked		
O	64 OC Selected flags for OC		Selected flags for OC are AND linked		
7	0	Polov	Selected flags for the relay are OR linked		
′	128	Relay	Selected flags for the relay are AND linked		

7.2.11.2 Example

Example: Output O1 shall be set if the 3 inputs I1 and I2 and I3 are set:

Definition Flag 1 (I1 set => Bit 0 ru18 set):

```
do01 flag operand A [1] = 18 "dig. input state (ru18)"
do02 flag operand B [1] = 28 "level 2 (do06)"
do06 flag level 2 [1] = 1
```

do03 flag operator mode [1] = 3 "AND"

Definition flag 2 (I2 set => Bit 1 ru18 set):

```
do01 flag operand A [2] = 18 "dig. input state (ru18)"
do02 flag operand B [2] = 28 "level 2 (do06)"
do06 flag level 2 [2] = 2
```

do06 flag level 2 [2] = 3 do03 flag operator mode [2] = 3 "AND"

Definition flag 3 (I3 set => Bit 2 ru18 set):

```
do01 flag operand A [3] = 18 "dig. input state (ru18)"
do02 flag operand B [3] = 28 "level 2 (do06)"
do06 flag level 2 [3] = 4
do03 flag operator mode [3] = 3 "AND"
```

Linking the flags:

```
do20 select flag O1 = 7 "F1 + F2 + F3"
do19 AND operation for output = 1 (selected flags for O1 are AND linked)
```

Output O1 is set only if the condition F1 (I1 is set) and F2 (I2 is set) and F3 (I3 is set) is fulfilled.

7.2.12 Inversion of the digital output state

The terminal state can be inverted via object do11 dig. output logic. The state after the inversion can be read out via the object ru18 dig. input state.

Index	Id-Text	Name	Function
0x260B	do11	digital out logic	Inversion of the digital output state
0x2C14	ru20	dig. output state	Terminal state of the digital outputs

Only outputs of the control board can be inverted via this parameter. The outputs of the safety module cannot be influenced by the control board.

7.2.13 Overcurrent of the digital outputs

All digital outputs are protected against overload by hardware. When this protection is activated, a separate error is generated for each output.

ru01		exception state	0x2C01		
Value	Function				
68	Error overcurrent Brake				
100	Error overcurrent out1				
101	Error overcurrent out2				
102	Error overcurrent out3				
103	Error overcurrent out4				
105	Error overcurrent encoder				
106	Error overcurrent 24V (overcurrent on the 24V outputs of the control terminal)				

7.3 Analog inputs

The F6 interface contains 3 analog inputs, analog input 3 has several limitations and is not used in the standard software. With S6 2 of the 3 hardware analog inputs are supported. (For further information on the specifications of the analog inputs, see the installation manual of the respective control type). The analog input values are displayed in the ru parameters.

Index	Id-Text	Name	Function	
0x2C2A	ru42	AN1 value display	display Display of the analog input value AN1 in %	
0x2C2B	ru43	AN1 after gain display	AN1 after the input block in %	
0x2C2C	ru44	AN2 value display	play Display of the analog input value AN2 in %	
0x2C2D	ru45	AN2 after gain display	y AN2 after the input block in %	
0x2C2E	ru46	AN3 value display	Display of the analog input value AN3 in %	only F6
0x2C2F	ru47	AN3 after gain display	AN3 after the input block in %	OIIIY FO

7.3.1 Overview of the analog inputs

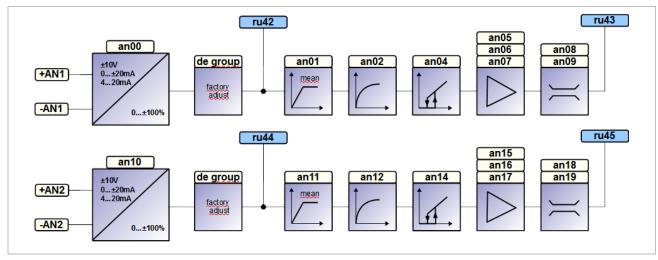


Figure 124: Analog inputs block diagram

7.3.2 Interface selection

Analog inputs 1 and 2 are configurable with an00 and an10 as voltage inputs (+/-10 V) or current inputs (+/-20 mA, 4...20 mA). Analog input 3 is always voltage input.

Index	Id-Text	Name	Function
0x3300	an00	AN1 interface selection	+/-10V, +/-20mA, 420mA
0x330a	an10	AN2 interface selection	+/-10V, +/-20mA, 420mA

an00 / an10	AN1 interface selection / AN2 interface selection 0x3300 / 0x330A		
Value	Configuration		
0	+/- 10 V		
1	+/- 20 mA		
2	4 20 mA		

7.3.3 Input level of the analog inputs

Index	Id-Text	Name	Function
0x3301	an01	AN1 mean filter	Mean filter for the analog signal.
0x330b	an11	AN2 mean filter	Mean filter for the arialog signal.
0x3302	an02	AN1 PT1 filter	DT1 filter for the analog input
0x330c	an12	AN2 PT1 filter	PT1 filter for the analog input
0x3304	an04	AN1 zero point hysteresis	Zoro point hyptorogia
0x330e	an14	AN2 zero point hysteresis	Zero point hysteresis
0x3305	an05	An1 gain	Cain of the analog signal
0x330f	an15	AN2 gain	Gain of the analog signal
0x3306	an06	An1 offset X	Officet V for the analog signal
0x3310	an16	AN2 offset X	Offset X for the analog signal
0x3307	an07	AN1 offset Y	Offset y for the analog signal
0x3311	an17	AN2 offset Y	Out = gain * (In – OffsetX) + OffsetY
0x3308	an08	AN1 neg limit	Lower limit for the applica actorist
0x3312	an18	AN2 neg limit	Lower limit for the analog setpoint
0x3309	an09	AN1 pos limit	Upper limit of the analog cotpoint
0x3313	an19	AN2 pos limit	Upper limit of the analog setpoint

The analog input signals can be filtered by means of averaging and PT1 element for interference suppression and provided with a zero point hysteresis.

Then, the gain can be adjusted and the signal with offset X and Y can be shifted:

ANx after gain display = (ANx value display – ANx offset X) * ANx gain + ANx offset Y The limitation occurs at last.

Example 1:

A 0..8V signal shall be normalized after the input level to -100% ... +100%.

Then the following adjustments must be done:

generate symmetry to 0 with offset X: 4V shall correspond to 0% => ANx offset X = 40%

adjust the gain: +/-4V shall correspond to +/- 100% => ANx gain = 2.5

Example 2:

A sensor provides already a signal of 0.7V at pressure = 0 bar and a signal of 9.5V with the final pressure of 200 bar. This voltage should be converted into a $0 \dots 100\%$ signal. The analog signal after the input level shall not leave the 0...100% range.

Then the following adjustments must be done:

Perform the 0-adjustment with offset X: 0.7V shall correspond to 0% => ANx offset X = 7%

adjust the gain: (9.5-0.7)V shall correspond to 100% => ANx gain = 1.136

Limit: ANx neg limit = 0% // ANx pos limit = 100%

7.3.4 Calculation of REF and AUX

Subsequently the internal analog signals AUX and REF are generated from the three analog signals via another block.

REF is directly assigned to an analog input.

AUX can be calculated via different arithmetic operations from two analog inputs.

Index	Id-Text	Name	Function	
0x331e	an30	ref and aux function	Calculation of AUX and REF	
0x2C30	ru48	analog REF display	Display of the internal REF value from the analog values in %	
0x2C31	ru49	analog AUX display	Display of the internal AUX value from the analog values in %	

an30	ref and aux function	on			0x331E
Bit	Function	Value	Plaintext	Notes	
		0	off	REF = 0	
03	ref input	1	AN1	REF = AN1	
		2	AN2	REF = AN2	
		0	off	A input = 0	
47	A input	16	AN1	A input = AN1	
47	A input	32	AN2	A input = AN2	
		48	PID	A input = PID Output	
		0	off	B input = 0	
811	B input	256	AN1	B input = AN1	
011		512	AN2	B input = AN2	
		768	PID	B input = PID Output	
		0	off	AUX = 0	
		4096	Α	AUX = A	
1215	aux function	8192	A + B	AUX = A + B	
1213	aux function	12288	A * (1+B)	AUX = A * (1+B)	
		16384	A * B	AUX = A * B	
		20480	A	AUX = A (absolute value of A)	

7.3.5 Mapping of REF and AUX

AUX (ru49) and REF (ru48) are limited to +/- 400% after the calculation. Then these two values can be set to any objects with the following settings.

Index	Id-Text	Name	Function	
0x331F	an31	REF selector	Determination which object is affected by REF	
0x3320	an32	REF norm fact	Scaling of the analog setpoint to the selected object.	
0x3321	an33	REF norm status	Status of the standardization function	
0x3322	an34	AUX selector	Determination to which object AUX acts on	
0x3323	an35	AUX norm fact	Scaling of the analog setpoint to the selected object.	
0x3324	an36	AUX norm status	Status of the standardization function	

The address of any object which is to be influenced by the analog values can be adjusted directly in an31 and an34.

All writable objects that are also permissible for process data are permitted.

If, for example, the setpoint speed shall be preset analog via vl20 target velocity (address 0x2314), an31 = 0x2314 must be adjusted.

The analog setpoint is standardized and by way adapted to the required value range of the objects with an32 REF norm fact and an35 AUX norm fact.

The values are written with the same standardization functions, over which the objects are accessible also via bus system.

If the permissible value range is exceeded, this can be seen in status an33 REF norm status or an36 AUX norm status with the display of 4 "data invalid". Then the converted analog value is not written into the parameter.

The scaling must be adjusted accordingly in these cases.

Example 1: Speed setting in vI20 target velocity via analog input 1

A speed in the range of +/- 3000 rpm shall be written into parameter vl20 vl target velocity with analog input 1.

The setting shall be done via the REF function, since only 1 input is required. Value 1 "AN1" is preset in an30 REF and AUX function under "ref input" (Bit 0...3).

The REF signal shall write the vI target velocity. => an31 REF selector = 2314hex

A REF value of 100% → 4096 shall derive to a setpoint of 3000 rpm in vl20. vl20 has a resolution of 1 rpm

$$\Rightarrow an32 = \frac{setpoint}{4096 * Auflösung} = \frac{3000}{4096} = 0.7324$$

If the setting of vI20 shall be limited to +/-3000 rpm, the AN1 limit values must be set to -100% or +100% in an08 and an09.

If the value from the above example is increased by a factor of 100, a value of 100% for REF results in a setpoint of 100 * 3000 rpm = 300000 rpm. 40% REF results in 0.4 * 300000 rpm = 120000 rpm. The upper limit of the setpoint is 128000 rpm. If the analog value exceeds 42.67%, the upper limit of the parameter is exceeded by the scaling.

This is displayed in parameter an33 REF norm status, which changes from 0 "OK" to 4 "data invalid". The analog preset values are not accepted in this case.

Example 2: Additionally setting of the torque limit in cs12 absolute torque via analog input 2

In addition to example 1, the torque limit cs12 absolute torque shall be preset via analog input 2 in the range +/- 200%. Since the speed is already preset via REF, the torque limit must be written via AUX.

Value 32 "AN2" is preset in an30 REF and AUX function under "A input" (Bit 4...7). In addition, "aux function" (bits 12 ... 15) must be set to 4096: A.

The AUX signal shall write cs12 absolute torque.

=> an34 AUX selector = 270C hex

A REF value of $100\% \rightarrow 4096$ shall derive to a setpoint of 200.0% in cs12. cs12 has a resolution of 0.1%

$$\Rightarrow an35 = \frac{200\%}{4096 * 0.1\%} = \frac{200}{409.6} = 0.4883$$

7.3.6 PID process controller

To use the system it is often necessary to equip the drive controller with an internal process controller. This can be used to built up pressure or temperature controls, for example. The difference between setpoint and actual value (deviation) supplies the PID controller. The PID controller adjusts the output frequency of the drive to minimize the deviation, which allows accurate control of system variables.

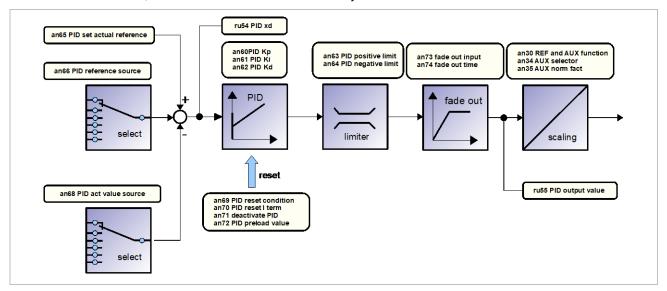


Figure 125: PID controller

The PID controller will be called by the MidIrq, scan times can be adjusted with is 22 Basic Tp. The reset time T_N of the PID process controller is not affected by this.

7.3.6.1 PID controller

Definition of the PID process controller:

Index	Id-Text	Name	Function
0x333C	an60	PID Kp	Setting the P-gain Factor with 4 decimal places
0x333D	an61	PID Tn	Presetting of the reset time in ms with 3 decimal places
0x333E	an62	PID Kd	Setting gain for the D-component Factor with 4 decimal places
0x333F	an63	PID positive limit	Positive limit of the PID controller.
0x3340	an64	PID negative limit	Negative limit of the PID controller.
0x2C36	ru54	PID xd	System deviation at the input of the PID controller - 400.0% 400.0%
0x2C37	ru55	PID output value	Output value of the PID controller -400.0% 400.0%

Input variables, limits and output are standardized in the same way as the analog values. 100.0% corresponds internally 4096. Value range +/-400.0% or +/- 16384.

7.3.6.2 Setpoint

Definition of the setpoint selection in the PID process controller:

Index	Id-Text	Name	Function
0x3341	an65	PID reference offset	Direct setting of the setpoint via this object. Always active, is added to the selectable setpoint source.
0x3342	an66	PID reference source	Setpoint selection for the PID controller

an66	PID reference	PID reference source				
Value	Function	Function Function				
0	off	Off: no source active. Only the PID reference offset acts as setpoint				
1	An1	The analog value at analog input 1 is the setpoint source. The value from an65 is added to the setpoint of the source (AN1).				
2	An2 The analog value at analog input 2 is the setpoint source. The value from an65 is added to the setpoint of the source (AN2).					

7.3.6.3 Actual value

Definition of the actual value selection in the PID process controller:

Index	Id-Text	Name	Function
0x3343	an67	PID actual value setting	Digital actual value setting via this object
0x3344	an68	PID act value source	Actual value selection for the PID controller

an68	PID act value source				
Value	Function	tion Function			
0	off	The PID controller is completely deactivated			
1	An1	Analog input 1 is actual value source			
2	An2	Analog input 2 is actual value source			
3	an67	PID actual value is preset via an67 in the range -400.0% 400.0%			
4	active current Active current ru11 act active current / rated motor current dr03 corresponds to 100.0%				
5	apparent current Apparent current ru10 act. apparent current / rated motor current dr03 corresponds to 100.0%				
6	Uic DC link voltage ru14 act Uic voltage / 1000V corresponds to 100%				
7	active power Active power ru82[2] electrical output power Rated device power Un * In * √3 corresponds to 100%				
8	actual torque Actual torque ru24 actual torque / rated motor torque dr09 corresponds to 100%				
9	utilization	Inverter utilization = apparent current / rated device current de28			

7.3.6.4 Reset conditions

The PID controller or only the I-component of the PID controller can be reset depending on the statemachine status but also depending on digital inputs.

The value to which the I-component is reset in this case can be parameterized.

By means of an adjustable fade-out time, the controller output value can be lowered on reset via an adjustable linear function or increased linearly at start-up.

Object an69 PID internal reset condition defines the conditions and how the PID controller shall be reset.

Index	Id-Text	Name Function	
0x3345	an69	PID internal reset condition	Reset conditions for the PID controller

an69	PID internal reset condition				
Bit	Function	Value	Plaintext	Notes	
		0	no reset		
		1	initialisation		
		2	not ready to switch on		
		4	Switch on disabled		
		8	ready to switch on		
		16	switched on		
		32	operation enabled	All values of st12 state machine	
		64	quick stop reaction active	display can be selected as reset	
		128	fault reaction active	condition for the PID controller.	
023	states for reset	256	fault	Reset is preset when not in status	
		512	shutdown reaction active	"operation enabled".	
		1024	disable operation active		
		2048	start operation active		
		4096	mod off pause active		
		8192	power off active		
		16384	protection time active		
		32768	protection time end		
		65536	endless protection time		
		131072	suppressed error		
		0	no PID reset	Selection how to reset the PID pro-	
2425	reset function	2 ²⁴	reset I-part	cess controller. The I-part is set to the value of an72 PID preload	
		2 ²⁵	disable PID	value.	
		0	no reset		
2627	fade out func- tion	2 ²⁶	set fact to 1	Selection how the fade out function shall be initialized.	
	uon	2 ²⁷	reset fact to 0	tion onali bo initializad.	

Index	Id-Text	Name	Function
0x3346	an70	PID reset integral term input	Preloading the I-part of the PID controller with activated digital input
0x3347	an71	PID deactivation input	Deactivation and and preloading of the complete PID controller. The output of the PID controller changes to the value of an72.
0x3348	an72	PID preload value	Setting of a value with which the I-part of the PID controller is preloaded.

7.3.6.5 Fade out function

A digital input must be defined in an73 PID fade out input to activate the fade out function.

When the digital input is set, the controller output is faded in with the time defined by an74 PID fade out time. If the digital input is not set, the controller output is faded out or reduced to 0 with the time defined in an74 PID fade out time.

The fade out function can be initialized with an69 PID internal reset condition, i.e. it can be determined whether the function should start faded in (set fact to 1) or faded out (reset fact to 0). Initialisation occurs depending on the current status of the state machine: if st12 state machine display displays one of the selected states in an69 PID internal reset condition.

Index	Id-Text	Name	Function
0x3349	an73	PID fade out input	Selection of the digital input for the fade out function.
0x334A	an74	PID fade out time	Time in s with three decimal places to fade out the controller output.

7.3.6.6 Scaling the output value

The PID controller output can be mapped to any objects with an30 ref and aux function.

7.4 Analog output

The F6 / S6 controllers have an unipolar analog output that can output signals of 0.1 \dots 10V.

The linearity between output value and analog output voltage is not guaranteed in the range up to 0.1V.

Index	Id-Text	Name	Function
0x3325	an37	ANOUT1 function	Selection of the object for analog output
0x3326	an38	ANOUT1 value	Cell for direct output (an37=0)
0x3327	an39	ANOUT1 gain	Gain
0x3328	an40	ANOUT1 offset X	Out (value + offset V) * gain + offset V
0x3329	an41	ANOUT1 offset Y	Out = (value + offset X) * gain + offset Y

The values of an37 have the following meaning:

an37	ANOUT1 function	0x3325
Value	Function	Scaling at 10V
0	ANOUT1 value (an38)	100%
1	abs. set value display (ru05)	1000rpm
2	abs. ramp out display (ru06)	1000rpm
3	abs. actual value (ru08)	1000rpm
4	abs. ref torque (ru23)	100%
5	abs. actual torque (ru24)	100%
6	apparent current (ru10)	10A
7	abs. active current (ru11)	10A
8	abs. demand position (st37)	231
9	abs. actual position (st33)	231
10	actual output voltage (ru16)	1000V
11	actual Uic voltage (ru14)	1000V
12	heatsink temperature 1 (ru25[1])	100°C
13	drive temperature (ru28)	100°C
14	internal temperature 1 (ru26[1])	100°C

7.5 Status LED

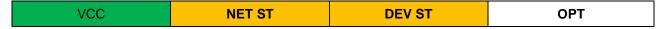
F6 / S6 controls have 4 (control type K) or 5 (control type A or P) status LEDs on the top

FS ST: Safety status (only for control type A or P)

VCC: Voltage supply

NET ST: Network / fieldbus state (e.g. CAN, EtherCAT, VARAN, ...)

DEV ST: Inverter / unit status Status (OK, error, without power supply)


OPT: for optional functions

7.5.1 Function of the status LEDs when switching on

VCC NET ST	DEV ST	OPT
------------	--------	-----

The 24V LED turns green immediately after switching on the 24V voltage supply.

If the FPGA has been booted correctly, the drive controller and fieldbus status LED will turn yellow after about 6s.

VCC	NET ST	DEV ST	OPT
vcc	NET ST	DEV ST	ОРТ

The required configuration is copied into the MRTE module if a new fieldbus interface has been selected with fb68. During this time, the two LEDs flash yellow.

The control is ready for operation after further 3s and the status LEDs change to their actual function.

7.5.2 Fieldbus state (NET ST)

A detailed description of the different light pattern for the different fieldbus types can be found in the installation manual of the control board.

7.5.3 Drive controller state (DEV ST)

red: There is an exception. ru01 != 0 yellow: no error, DC link not loaded green: no error, ready for operation

Identification of the unit can additionally occur via the DEV ST LED. The DEV ST LED flashes permanently by activating with fb32.

Index	Id-Text	Name	Function
0x2B20	fb32	LED 'DEV ST' blink status	Visual identification of the unit

fb32	unit identif	fication	0x2B20
Value	Name	Note	
0	off	DEV ST LED with continuous light	
1	on	DEV ST LED flashes	

7.5.4 FS Status (control type A and P)

The description of the function of the FS ST LED (status LED safety module) occurs in the safety manual for the corresponding module.

8 Timer

8.1 Function of timer / counter blocks

The software outputs can be used to set / reset software inputs and thus trigger reactions (e.g. switch off / set setpoint speed to zero).

In some cases, however, this reaction should only be carried out with a time delay.

It makes sense to insert a timer/counter element between the occurrence of an event and the activation of a software input.

A timer element counts in a fixed time pattern (e.g. ms), a counter counts the occurrence of certain events.

The timer/counter output value is made available as comparison operand in do01 / do02.

This allows a "successor flag" to be generated after a time has elapsed, which then acts on a software input, for example.

The timer / counter start / count / reset inputs are ru88 complete flag state, ru18 digital input state, ru19 internal output state or ru20 digital output state.

8.2 Parameter

8.2.1 Overview

Index	Id-Text	Name	Function
0x261E	do30	number of count units	Number of passing timer units (max 2)
0x261F	do31	counter unit mode	Setting the mode for the timer / counter block: Function is timer or counter Definition of the reset behaviour Definition of the counting behaviour
0x2620	do32	run source parameter	Selection if ru88, ru19, ru20 or ru18 is used as release for the counter
0x2621	do33	run source bit	Selection which bit shall be used as release. Depending on the parameterization in do31 counter unit mode, inverting of the bit can also be used as reset or hold input
0x2622	do34	reset source parameter	Selection if ru88, ru19, ru20 or ru18 shall be use as reset input
0x2623	do35	reset source bit	Selection which bit is to be used as reset input If no bit is selected here, the inverted release signal must be programmed as reset source.
0x2624	do36	count source parameter	Selection if ru88, ru19, ru20 or ru18 is used as counting input
0x2625	do37	count source bit	Selection which bit is to be used as counting input
0x2626	do38	direction source parameter	Selection if ru88, ru19, ru20 or ru18 is used as counting direction input
0x2627	do39	direction source bit	Selection which bit is used to specify the counting direction
0x2628	do40	timer end value	End value at which the counter is stopped
0x2C59	ru89	timer value	Display of the counter value (identical parameter for the display in ms or events)

8.2.2 Configuration of the counting unit

do31	counter ur	nit mode			0x261F									
Bit	Function	Value	Plaintext	Note										
		0	Timer	The counter operates as timer Input is the ms grid										
0, 1 counter mode	1	Counter	The counter operates as event countenance input is an edge of an input bit (Definition of the bit with do37 courn Definition of the edge with bit 5/6 o	nt source bits,										
		0	use as reset	The inverted enable signal is simul The counter counts events or time ble bit is set. If the enable bit is om stopped and reset to zero	as long as the ena-									
24	enable mode	4	use as halt	The counter counts events or time ble bit is set. The omission of the e the counter. The counter can only I the additional reset input	nable signal stops									
											8	only for start	If the counter has been started by to can only be stopped again and simulation zero by the separate reset input	
		0	only positive edge	both edges are counted										
57	count mode	32	only negative edge	negative edges are counted										
		64	both edges	both edges are counted										

8.2.3 Selection of the start bit

In the array do32 run source parameter the parameters are defined to taken the enable / start bit of the counter. Subindex 1 defines counter 1, subindex 2 defines counter 2

do32	run source	run source parameter 0x2620		
Value	Name	Function		
0	ru88	Selection of the parame	eter, which bits can start or release the	counter
1	ru19	ru88: Bit 0 = F1	/ Bit 1 = F2 / / Bit 8 = CF1 / / Bit 11	= CF4
2	ru20		/ / Bit 3 = O4 / Bit 4 = OA / / Bit 6 = / / Bit 7 = I8 / Bit 8 = IA / / Bi11 = ID	
3	ru18		CW1/CW2 / Bit 14/15 = STO1/STO2	,

The bit (exactly 1 bit) that shall be used as run / start bit of the counter is selected in do33 run source bit. Subindex 1 applies to counter 1, subindex 2 to counter 2. If a bit is selected (e.g. bit 9 of ru19), that is not supported by the selected parameter, the counter is never started.

do32	run soi	urce bit				0x2620
Value	Text	ru88	ru19 / ru20	ru18		
0	Bit0	F1	01	l1		
1	Bit1	F2	02	12		
2	Bit 2	F3	O3	13		
3	Bit3	F3	O4	14		
4	Bit	F4	OA	15		
5	Bit	F5	OB	16	Only one bit is selectable as run source	bit. If this bit is set,
6	Bit	F6	OC	17	the timer / counter starts	·
7	Bit	F7	Relay	18		
8	Bit	F8		IA	Depending on the parameterization in de	o30[1] mode, omitting
9	Bit	CF1		IB	of the bit while the counter is running eit	her does nothing, or
10	Bit	CF2		IC	the counter is set to zero, or the counter	output is retained.
11	Bit	CF3		ID		
12	Bit	CF4		CW1		
13	Bit			CW2		
14	Bit			STO1		
15	Bit			STO2		

If the run bit is simultaneously set with the reset bit, the counter restarts immediately. This means, no positive edge is required at the run bit, but a stopped counter is started when the run bit is active.

8.2.4 Selection of the reset bit

The reset input must be defined in the same way as the start / run input (if you do not want to do without it)

do34 reset source parameter offers the same setting options as do32 run source parameter.

do35 reset source bit is identical with do33 run source bit.

Setting the reset bit always stops the counter and sets it to zero. Alternative possibilities of use do not exist.

The reset input is processed after the run input. If both bits fail simultaneously, the counter is stopped and set to zero.

8.2.5 Selection of the count event

If the counter shall not be used as timer which counts in the ms grid, but as event counter, the count event can be selected in the same way as the start and the reset bit with do36 count source parameter and do37 count source bits.

A positive edge of the selected bit causes a counting pulse.

8.2.6 Selection of the bit for reversing the direction of rotation

In the same way as the start / run input, a bit for reversing the counting direction can also be defined.

If the bit is set, counting is reversed in both timer and event counter mode.

The counter is limited downwards to zero.

do38 direction source parameter offers the same setting options as do32 run source parameter

do39 direction source bit is identical with do33 run source bit.

Setting the reset bit always stops the counter and sets it to zero.

Alternative possibilities of use do not exist. The reset input is processed after the run input. If both bits fail simultaneously, the counter is stopped and set to zero.

8.2.7 Evaluation of the counter

The output value of the counter/counters is displayed for diagnostic purposes as array in the ru parameters.

Depending on the parameterisation, the displayed value means the number of ms or events. In order to use the counters, the output values must be available as comparison operand in do01 flag operand A and do02 flag operand B.

The maximum value of the counter is 1 hour or 3600000. When the final value is reached, the counter does not reset automatically but remains at the final value.

8.2.8 Number of timers

The number of calculated/passing timer blocks can be defined with 0x261E do30 number of count units. The upper limit is set to 2.

8.2.9 Overview of the counter structure

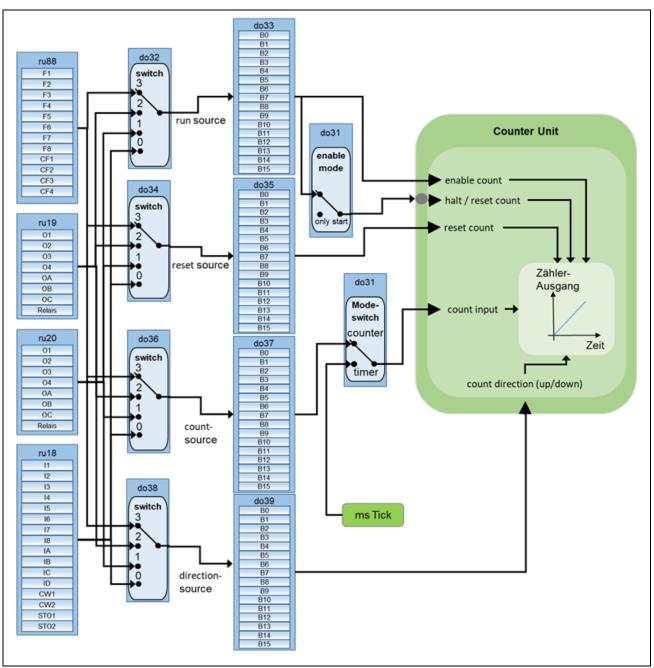


Figure 126: Timer / counter structure

9 Object directory

9.1 Glossary

The term "object dictionary" is used in this manual as name for an ordered collection of parameters / parameterizing data.

The terms parameter and parameterizing data are used synonymously in this manual. Both terms refer to an object in the inverter.

A parameter has an index, subindex and name. The user can read and / or write to a parameter to influence the functionality of the device.

Example of a parameter from chapter 4.1.2 Control word:

Index	Id-Text	Name	Function
0x2500	co00	(CiA 0x6040) controlword	KEB spec. object
0x6040		(CIA 0x6040) Controlword	CiA402 object

The parameters of a KEB inverter are collected in object dictionaries. Then they are sorted into groups (st, co, ...) and according to their parameter index.

Access to an object dictionary allows access to the contained parameters. For access to a KEB object dictionary the KEB software tool COMBIVIS studio 6 is recommended.

The latest version of COMBIVIS studio 6 can be downloaded free of charge and without registration from the KEB website.

Link to the setup of COMBIVIS studio 6

9.2 Display of parameters in COMBIVIS 6

COMBIVIS 6 uses for communication protocol DIN66019II via Ethernet or via serial connection or USB.

Information to establish a connection between COMBIVIS and a KEB device can be found in the COMBIVIS 6 description and in the help menu of COMBIVIS 6.

9.2.1 For information on how to connect to the different object dictionaries on a KEB device, see chapter 9.5

9.2.2 Communication in this manual.

In COMBIVIS, all parameters of an object directory are always displayed and sorted by groups and index. Only the index, subindex, name and value are displayed in the interface. Further information about a parameter can be seen via the property editor.

The following example shows the object an08 in COMBIVIS.

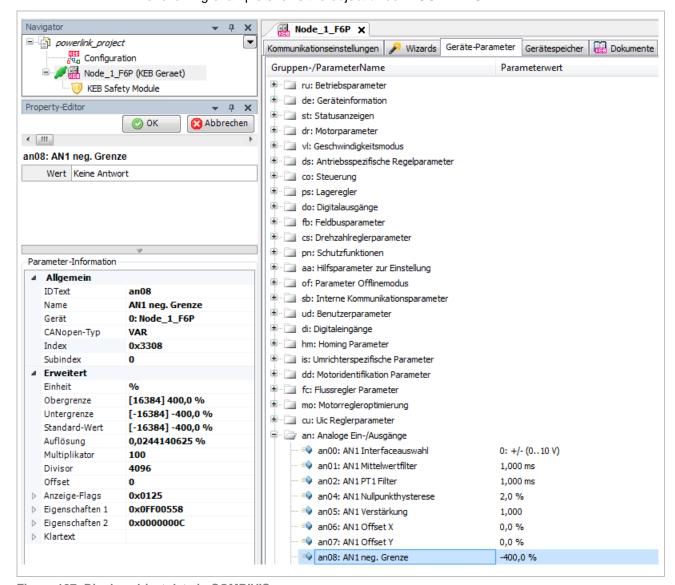


Figure 127: Display object data in COMBIVIS

9.3 KEB specific parameters and standard - conform parameters

The parameters in a KEB object dictionary are usually KEB specific.

Parameters that conform to a specific standard are listed in the pr: com profile objects – group. Most of the parameters are identical to KEB specific objects and provide access to the same object only at a different address.

9.3.1 EtherCAT conform parameters

KEB devices type F6 and S6 are certified EtherCAT slaves. All objects required for certification are supported. The objects for setting the process data mapping, the Sync Manager and the Sync Manager parameters are listed, among others in the pr - parameter group.

Further information on the implementation of EtherCAT on the devices of the F6 and S6 types can be found in the Programming manual | Fieldbus systems.

The Programming manual | Fieldbus systems can be downloaded from the KEB website. Registration is required.

9.3.2 CanOpen conform parameters

9.3.2.1 Identical objects

For all of these objects, the size of the array is always displayed for arrays in subindex 0.

CanOpen			KEB specifi	С	
Index	Subidx	Name	Index	Subidx	Idx text
0x603f	0	error code	0x2101	0	st01
0x6040	0	controlword	0x2500	0	co00
0x6041	0	statusword	0x2100	0	st00
0x6042	0	vl target velocity	0x2314	0	vl20
0x6043	0	vl velocity demand	0x2103	0	st03
0x6060	0	modes of operation	0x2501	0	co01
0x6061	0	modes of operation display	0x2102	0	st02
0x6062	0	position demand value	0x2125	0	st37
0x6064	0	position actual value	0x2121	0	st33
0x6065	0	following error window	0x2E0C	0	ps12
0x6066	0	following error time out	0x2E0D	0	ps13
0x6067	0	positioning window	0x2E0E	0	ps14
0x6068	0	positioning window time	0x2E0F	0	ps15
0x606B	0	vl velocity demand	0x2103	0	st03
0x606C	0	velocity actual value	0x2120	0	st32
0x6071	0	target torque	0x250F	0	co15
0x6072	0	max torque	0x270C	0	cs12
0x6077	0	torque actual value	0x2122	0	st34
0x607A	0	target position	0x2513	0	co19
0x607B	1	position range limit	0x2E12	0	ps18
	2		0x2E13	0	ps19
0x607C	0	home offset	0x3100	0	hm00
0x607D	1	software position limit	0x2E11	0	ps17
	2		0x2E10	0	ps16
0x607F	0	max profile velocity	0x2E20	0	ps32
0x6081	0	profile velocity	0x2E1E	0	ps30
0x6082	0	end velocity	0x2E1F	0	ps31
0x6098	0	homing method	0x3101	0	hm01
0x6099	1	homing speeds	0x3102	0	hm02

CanOpen			KEB specific		
Index	Subidx	Name	Index	Subidx	ldx text
	2		0x3103	0	hm03
0x60E0	0	positive torque limit value	0x270D	0	cs13
0x60E1	0	negative torque limit value	0x270E	0	cs14
0x60F4	0	following error actual value	0x2124	0	st36
0x60FF	0	target velocity	0x2510	0	co16

9.3.2.2 Not identical objects

9.3.2.2.1 Shutdown modes

Index	Name	affects on KEB specific object:
0x605B	shutdown option code	co32 state machine properties->shutdown mode
000000	Shataown option code	co32 state machine properties->shutdown ramp mode
0x605C	disable operation option code	co32 state machine properties->disable operation mode
0x003C	disable operation option code	co32 state machine properties->disable op.ramp mode
0x605E	fault reaction option code	co32 state machine properties->fault reaction mode

The status shutdown is achieved by removing bit 0 in the controlword (switch on) (=> Chapter Fehler! **Unbekanntes Schalterargument.** Control word).

shutdov	vn option code	0x605B		
Value	/alue Function			
-1	Shutdown with ramp / fault reaction ramp (pn parameter) is used			
0	Immediate shutdown of the modulation			
1	Shutdown with ramp / standard ramp (co Parameter) is used			

The state disable operation is reached by removing of bit 3 in the controlword (enable operation) (=> Chapter 4.1.2 Control word).

disable operation option code 0x605C				
Value	Function			
-1	Disable operation with ramp / fault reaction ramp (pn parameter) is used			
0	Immediate shutdown of the modulation			
1	Disable operation with ramp / standard ramp (co parameter) is used			

The state fault reaction is reached when an error occurs which does not mandatory shutdown the modulation and when value 1 is selected as response (stop mode) (=> Chapter 4.3.1 Fehler! Schalterargument nicht angegeben.).

fault rea	action option code	0x605E		
Value				
-1	Disable operation with ramp / fault reaction ramp (pn parameter) is used			
0	Immediate shutdown of the modulation			

9.3.2.2.2 Communication

Index	Subidx	Name	affects on KEB specific object:	
0x60C2	1 interpolation	interpolation time period	fb10 ovne intervall	
0x60C2	2	interpolation time period	fb10 sync intervall	

interpolation time period [Subldx 1] * 10^ interpolation time period [Subldx 2] results in the synchronous cycle time in [s].

fb10 also affects the synchronous cycle time. The setting/display is in μ s.

Example: 0x60C2 Subldx 1 = 5 / Subldx 2 = -3 => 5 * 10^-3 s = 5ms => fb10 = $5000(\mu s)$.

Adresse	SubIndex	IdTxt	Name	Online-Wert
0x2B0A	0	fb10	sync interval	5000
0x60C2	1		interpolation time period	5
0x60C2	2		interpolation time period	-3

Figure 128: Interpolation

Restrictions and specifications regarding possible synchronous cycle times => Chapter 4.9 Synchronisation and 6.2.20.3 Task setting and synchronous fieldbus operation.

9.3.2.2.3 Information parameters

Index	Name	Function
0x1000	device type	402 => inverter supports the CIA402 profile

Index	Name	Subidx	Name			
		0	Number	Number of elements in the structure => 4		
0:4040	identity object 2	· -	1	vendor ID	EtherCAT / CAN: KEB = 20 Manufacturer-Id assigned by the CiA. VARAN: KEB = 26 Manufacturer-Id. assigned by the VNO	
0x1018			object	object	object	2
		3	revision number	Configuration ID (number of the parameter description for COMBIVIS) (identical de08)		
		4	device serial number	Serial number of the inverter (identical de00)		

Index	Name	Function
0x6502	supported drive modes	0x000001A3 => supported drive modes = Bit 8 "cyclic sync velocity (csv)", Bit 7 "cyclic sync positioning (csp)", Bit 5 "homing (hm)" and Bit 1 "velocity (vl)", Bit 0 "profile position" (pp)

9.3.2.2.4 Error messages

Index	Name	Function
0x1001	error register	Displays the error state of the CANopen client

error re	0x1001		
Bit	Function		
0	General error (is set with all other error messages)		
1	Error overcurrent		
2	Error overpotential or underpotential		
3	Error overtemperature		
4	Error communication		
5	Error profile specific		
6	reserved		
7	KEB specific		

A value of 0 (no bit set) means: No error

9.3.2.2.5 Speed displays

For the following object there is no KEB specific object in the same resolution:

Index	Sub-Idx	Name	Function
0x6044	0	vl velocity actual value	Actual speed for speed control (as ru08) but with the resolution 1 = 1rpm (resolution of the velocity modes)

9.3.3 Parameter conform to other fieldbus system standards

Other fieldbus systems which are supported on KEB devices of type F6 and S6 are VARAN on control type K and PROFINET, POWERLINK and EtherNetIP on control type A.

Information on these fieldbus systems and the associated parameters can be found in the Programming manual | Fieldbus systems.

The Programming manual | Fieldbus systems can be downloaded from the KEB website. Registration is required.

9.4 Volatile and non-volatile parameters in the object dictionary

Parameters in the KEB object dictionary are stored either permanently in the device (non-volatile) or until the next reset (volatile).

Read-only parameters display only the actual operating state and are therefore only stored in volatile memory.

Additionally some parameters must always be set to a defined start value at power on (hardware reset). These parameters are also only stored volatile.

The following parameters must be set to a defined start value after power-on:

ru parameters		Peak value memory
dr parameters	8	Parameter changes, not yet confirmed by dr99
co parame-	controlword	co00
ters	Setpoint settings (target, offset)	co15, co16, co17, co18, co19
	Auto store	co83
external source	ce for output	do10
external source	ce for input	di02
position control parameters Fieldbus parameters		ps30, ps31
		fb10, error displays fb21fb31
SACB diagno	sis parameters (sb group)	all

All other parameters that are not changed for longer than approx. 80ms are permanently stored in the device.

The device requires approx. 2.5 seconds to check which parameters must be stored. The longest time from changing a parameter to saving it in the non-volatile memory takes about 2.5 seconds.

The F6 / S6 devices store changed parameters automatically non-volatile when the 24V supply voltage is switched off. The time still available for storing the parameters depends on the load of the voltages.

This time is not always sufficient to save all parameters. Therefore, the data is always automatically stored in the background, even during operation. Due to the slower storage medium, only data such as error and operating hours counters are stored on the VARAN card.

In order to receive a feedback after a parameter download when the saving of the parameters is completed, each parameter list should be completed by writing coo7 = 0 and then coo7 = 1.

The second write access is only acknowledged positively when saving is complete.

9.4.1 Save mode and status of the non-volatile memory

Index	Id-Text	Name	Function
0x2553	co83	non volatile memory mode	Select memory mode

The values of co83 non volatile memory mode have the following meaning

co83	Non volatile memory mode		0x2553
Value	Name	Name Note	
0	automatic mode	Data is automatically saved in the background.	
1	manual mode	Changed data are not saved automatically, but only when the 24V s switched off (if still possible). To safe the data change into "automatic mode"	

After power-on or reset the "automatic mode" $(\cos 3 = 0)$ is always active.

The current state of the storing can be monitored via the object co07 Non volatile memory state.

Index	Id-Text	Name	Function
0x2507	co07	non volatile memory state	State of the memory manager

The values of co07 non volatile memory state have the following meaning

co07	Non volatile memory state		0x2507
Value	Name	Note	
0	Store process active	There are parameters to store.	
1	Store process completed	Memory cache empty. All data are stored no	n-volatile.

Downloads can be secured with co07, by making sure that the download is only completed when the write cache is completely empty.

To this end add object co07 non volatile memory state twice at the end of the download list.

In the first entry co07 non volatile memory state must be written to 0. This immediately changes the state of the write cache to 0 (storage active).

In the second entry co07 must be written to 1. This write request is responded by the inverter with error code (inverter busy) until the storage process is completed and co07 non volatile memory state changes to 1.

COMBIVIS automatically repeats write processes which are answered with inverter busy. Therefore the download ends only when the storing is completed.

Additionally the setting of co07 non volatile memory state 0, causes that the memory delay is set to 0 until the next change of co07 non volatile memory state to 1.

9.4.2 Resetting of the non-volatile parameters

The drive parameterization can be reset via the following objects:

Index	Id-Text	Name	Function
0x2508	co08	reset options	Determination when default-values-loading is carried out
0x2509	co09	reset control	Proceed reset

The values of co08 reset options have the following meaning

co08	reset options		0x2508
Bit	Name	Note	
0	default after every reset	Default values are loaded after every reset / restart. set by the reset / restart.	This bit is not re-
1	default after next reset	Default values are loaded after next reset / restart. This bit is reset k reset / restart to 0.	

9.4.2.1 Release reset

A reset of the drive can be released via object co09 reset control during operating time. This is done by writing value 1 to the object co09 reset control.

Releasing a reset is only possible if the drive is not in state operation enabled or another state where the power modules are in operation.

The write access to object co09 reset control is positive acknowledged. An internal counter is started with this access. The progress of this counter can be read out in co09 reset control.

Further writes accesses are responded with the acknowledgement "inverter busy" during the timer increments. During this period the changed unit adjustments till then are stored non-volatile.

A reset of the unit is released after expiration of the counter.

9.4.2.2 Trigger loading of default values into download lists

If the function "Loading of default values" is used in a download list, please note the following:

- Insert the object co08 reset options with value 2 at the first place.
- Insert object co09 reset control with value 1 in the next row.
- Insert a waiting time for the time of execution of the reset command. This time is dependent on the parameter scope of the respective inverter and the adjusted time-out time in COMBIVIS. A waiting time of 20s should always be sufficient.

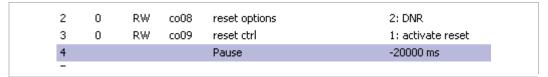


Figure 129: Loading of default values in download lists

Complete the download list with the other required parameters.

9.4.3 Checksum

It is possible to check the total non-volatile memory of the unit with a 128-bit hash value or a checksum. To this end the superior control can compare the 128 bit hash with the stored value after switching on. By way it can be checked whether the data in the unit have changed.

The MD5 hash is generated by writing 1 to de107. de107 and de108 are not stored. A new checksum must be requested after every power-on.

Even minor changes in only one parameter lead to a completely different MD5 hash.

Index	Id-Text	Name	Function
0x206B	de107	get MD5 hash	Generate the checksum
0x206C	de108	MD5 hash	Comparison of NV data
0x206D	de109	exclusion from MD5	Exclusions for some parameters

The 128 bits are stored in an array in de108 MD5 hash.

de108	MD5 hash		0x206C
Subidx	Function	Notes	
1	Hash Bits 0 31		
2	Hash Bits 3263		
3	Hash Bits 64 95		
4	Hash Bits 96 127		

The listed parameters can be excluded from the calculation of the checksum with de109 exclusions from MD5.

de109	exclusion from MD5		0x206D
Bit	Function	Notes	
0	ec23 system position		
1	ec23 system position B		

9.5 Return codes at parameter accesses

If a parameter of the object dictionary is accessed (reading or writing) a feedback is sent by the KEB device.

In the case of a read access, this feedback contains the read parameter value.

Regardless of the access type, a return code is sent in each return message. This return value contains status information about the process of the parameter access.

For requests via the diagnostic interface, the return code is a KEB-specific value. The possible values are described below.

The KEB specific return code is converted into a fieldbus specific value for SDO requests via the fieldbus interface. The fieldbus-specific values are described in the Programming manual | Fieldbus systems.

The following KEB specific return codes are possible:

Return code 0: OK

The request was successful.

Return code 1: Device not ready

The request was not answered within the timeout time.

Return code 2: Invalid address or password

The requested parameter is not supported by the device or the adjusted password level is not sufficient for the request.

Return code 3: Invalid data

Occurs only with write requests. The written value is outside the parameter limits. Not all values within the parameter limits are valid for some parameters, e.g. ec16 encoder type. In this case the invalid values are also acknowledged with return code 3.

Return code 4: Parameter read only

A write request to a write protected parameter is acknowledged with this return code.

Return code 5: BCC-error

The BCC check has detected an error.

Return code 6: Device busy

The request cannot be processed at the moment. The device processes a previous request with extensive background routine, after which further requests are accepted again. Requests that are acknowledged with return code 6 should be repeated.

Return code 7: Invalid service

The requested service is not supported by the device. The supported services are listed in de10 operator config data subindex 5 and 6.

Return code 8: Invalid password

The adjusted level is not sufficient for the request.

Return code 9: Telegram-framing error

The checked telegram has either too few or too many characters.

Return code 10: Transmission error

A parity or overrun error was detected.

Return code 11: Invalid subindex

The requested subindex is invalid.

Return code 12: Invalid language

Not used with F6/S6.

Return code 13: Invalid address

The requested parameter is not supported by the device.

Return code 14: Function not possible

The request is currently not possible. Some parameters can only be written with modulation switched off. In this case a request with modulation switched on is acknowledged with return code 14.

10 Communication

10.1 Communication interfaces

F6 / S6 devices offer the following communication interfaces.

- A serial diagnostic interface for the connection with diagnostic tools (e.g. COMBIVIS) or an F6 operator.
- One CANopen fieldbus interface
- One real-time Ethernet interface

Depending on the control board, EtherCAT (control type P), EtherCAT or VARAN (control type K) or EtherCAT, PROFINET, POWERLINK and EtherNet / IP are available on the real-time Ethernet interface (control type A).

The diagnostic interface is always available parallel to the fieldbus interface. It can be changed between CAN interface and real-time Ethernet interface.

Parallel operation of CAN and real-time Ethernet interface is not possible.

The diagnostic interface is not intended for permanent operation of the device.

NOTICE

The different versions of the real-time Ethernet interface in control type K are based on different hardware. Therefore the selection of the real-time Ethernet protocol must be observed when ordering.

10.2 Diagnostic interface

The diagnostic interface is used to connect the F6 / S6 device with diagnostic tools, such as COMBIVIS.

KEB DIN66019-II is used as protocol. This is an asynchronous serial protocol with the following basic data:

1 start bit, 7 data bits, 1 parity bit (even), 1 stop bit.

These settings are fixed and can not be configured at the drive.

A description of the protocol is available from the KEB website.

➤ The diagnostics interface supports point-to-point connections via RS232 or RS485 (full duplex). Networks via RS485 (half duplex) are not supported.

The configuration of the diagnostic interface on the devices of control type P differs from the configuration on the devices of control type A and K.

- The term "node address" or "node ID" often used in this chapter refers to the identification number used by the DIN66019 protocol to address a KEB device.
- "Node address" or "Node ID" in this chapter does not mean the Node ID which can be set via the rotary coding switches which is used to identify the KEB device via the fieldbus interface (CAN or Ethernet).
- Information about the "Node ID" of the fieldbus interface can be found in the Programming manual | Fieldbus systems, which can be downloaded from the KEB website. Registration is required.

10.2.1 Configuration of the diagnostic interface on the devices of control type P

The diagnostic interface can be configured on the devices of control type P via the following options.

Index	Sub In- dex	Id-Text	Name	Function
0x2B0D	0	fb13	drive node ID	Node address of the inverter object dictionary
0x2B0E	0	fb14	DIN66019 baud rate	Baud rate
0x2B0F	0	fb15	node IDs	Number of node IDs
0x2B0F	1	fb15	application node ID	Node address of the application object dictionary
0x2B0F	2	fb15	debugger node ID	Node address of the debugger object dictionary
0x2B10	0	fb16	fieldbus node injection	Node address of the object dictionary to which the communication of the fieldbus interface is transmitted
0x200A	0	de10	operator cfg data	Structure with configuration data for F6 / S6 operators or for the application software and for the connection to the file system

10.2.1.1 Node address (Node IDs) for DIN66019

In the KEB DIN66019-II protocol, each node is identified by its own node address. Each node has a separate object directory.

A device of control type P can contain several object dictionaries in different parts of the device. Therefore, a device of control type P also has several DIN66019 nodes, each is identified by its own node address.

10.2.1.1.1 Node address of the inverter object dictionary

To address the object dictionary of the inverter via the diagnostic interface, the adjustable node address in fb13 drive node ID must be used.

The object dictionary of the inverter is available on each KEB device. Other object dictionaries are optional.

fb13	drive node ID	0x2B0D	
Value	Meaning	Note	
0-238	Node address of the inverter object dictionary	Default	value = 1

To enable automatic recognition of replacement devices, the default value should not be used in productive systems.

10.2.1.1.2 Node address of the application object dictionary

Devices of control type P can have a separate application object dictionary with its own node address.

To address the object dictionary of the application software via the diagnostic interface, the adjustable node address in fb15.1 application node ID must be used.

fb15.1	appliction node ID	0x2B0F	
Value	Meaning	Note	
0-255	Node address of the application object dictionary	Default	value = 2

A standard KEB device of control type P does not yet have a separate application object directory in the actual software version.

10.2.1.1.3 Node address of the debugger

A debugger object directory is available on the devices of control type P from which additional information can be read out.

To address the object directory of the debugger via the diagnostic interface, the adjustable node address in fb15.2 application node ID must be used.

fb15.2	debugger node ID	0x2B0F	
Value	Meaning	Note	
0-255	Node address of the debugger object dictionary	Default	value = 255

10.2.1.1.4 Inserted fieldbus node address

Telegrams incoming at the device via the fieldbus interface are transmitted to the object directory of the inverter by default and after each reset of the device.

If it is requested to address another object directory with DIN66019 telegrams sent via the fieldbus interface, the corresponding node address can be set via parameter fb16 fieldbus node injection .

The DIN66019 telegrams of the fieldbus interface are transmitted to the object directory, which is addressed via the node address in fb16.

fb16	fieldbus node injection	0x2B10	
Value	Meaning	Note	
0-255	Node address of the object directory where the DIN66019 telegrams are sent which are sent to the fieldbus interface.	Default	value = value in fb13

Fb16 is a volatile parameter and is set to the value of fb13 at every reset. Thus, the object directory of the inverter is automatically addressed after every reset.

10.2.1.2 DIN66019 baud rate

The communication speed can be adjusted via the baud rate. The following baud rates are available depending on the control type.

fb14	DIN66019 baud rate		0x2B0E
Value	Meaning	Note	
5	38400 bit/s	Default value	
6	55500 bit/s		
7	57600 bit/s		
8	100000 bit/s		
9	115200 bit/s		
10	125000 bit/s		
11	250000 bit/s		·
12	500000 bit/s		·

NOTICE

The baud rate is 38400 bit/s after a power-on reset or after switching on of the device and must be switched from the DIN66019 master to another value, if required. The baud rate is reset to 38400 bit/s after approx. 10s if the interface is not used.

10.2.1.3 Operator config data

An operator connected to the device via the diagnostic interface requires (for optimal operation) information about the characteristics of the diagnostic interface and the object directory.

These are provided via the structure de10 "Operator config" data.

de10	operator cfg data					
Subidx	Meaning			Note		
0	Structure length	byte	RO			

de10	operator cfg data			0x200A
Subidx	Meaning			Note
1	idx start object	long	RW	Contains the index and subindex of the object
				which is displayed by the operator after the start.
2	supported baud rates	long	RO	List of supported baud rates
3	baud rate addr	word	RO	Address of the object to change the baud rate.
4	software version addr	long	RO	Address of the object of the software version.
5	software date addr	long	RO	Address of the object of the software date.
6	supported services 31-0	long	RO	List of supported DIN66019 services (31-0)
7	supported services 63-32	long	RO	List of supported DIN66019 services (63-32)
8	watchdog addr	long	RO	Address of the object of the watchdog function.
9	com mode	long	RW	Communication modes (see 0)
10	Node Id object	long	RO	Address of the object of the inverter Node ID
11	MAC address object	long	RO	Address of the object of the MAC address
12	IP address object	long	RO	Address of the object of the IP address (Ethernet)
13	IP subnet mask object	long	RO	Address of the object of the subnet mask
14	IP gateway address object	long	RO	Address of the object of the gateway address
15	IP scan name object	long	RO	Address of the object for the scan name function
16	EoE IP address obejct	long	RO	Address of the object of the EoE IP address
17	EoE IP subnet mask object	long	RO	Address of the object of the EoE subnet mask
18	EoE IP gateway address object	long	RO	Address of the object of the EoE gateway address

idx start object		0x200A [1]			
Description	Default value:				
Format: 0xSSSSIII (highword = subindex, lowword = index)	0x00002C03				
supported baud rates		0x200A [2]			
Description	Default value:				
Bit 0: Baud rate index 0 (1200 bit/s)	0x00001FE0				
Bit 1: Baud rate index 1 (2400 bit/s)	(Bit 5, 6, 7, 8, 9), 10, 11 and			
Bit 2: Baud rate index 2 (4800 bit/s)	12)				
Bit 3: Baud rate index 3 (9600 bit/s)					
Bit 4: Baud rate index 4 (19200 bit/s)					
Bit 5: Baud rate index 5 (38400 bit/s)					
Bit 6: Baud rate index 6 (55500 bit/s)					
Bit 7: Baud rate index 7 (57600 bit/s)					
Bit 8: Baud rate index 8 (100000 bit/s)					
Bit 9: Baud rate index 9 (115200 bit/s)					
Bit 10: Baud rate index 10 (125000 bit/s)					
Bit 11: Baud rate index 11 (250000 bit/s)					
Bit 12: Baud rate index 12 (500000 bit/s)					
baud rate addr		0x200A [3]			
Description	Default value:				
Format: 0xIIII (index, subindex always 0, only VAR objects)	0x2B0E				
software version addr		0x200A [4]			
Description	Default value:				
Format: 0xSSSSIIII (highword = subindex, lowword = index)	0x00002010				
software date addr		0x200A [5]			
Description	Default value:				
Format: 0xSSSSIIII (highword = subindex, lowword = index)	0x00002011				
supported services (31-0)		0x200A [6]			
Description	Default value:				
Bit 31 = service 31 Bit 0 = service 0	0x00244003				

		0x200A [7]
Description	Default value:	
Bit 63 = service 63 Bit 32 = service 32	0x00000000	
watchdog addr		0x200A [8]
Description	Default value:	
Format: 0xSSSSIIII (highword = subindex, lowword = index)	-1 (not support	ed)
com mode		0x200A [9]
Description	Default value:	
0: Default communication mode1: KEB FTP Modus	0	
Node Id object		0x200A [10]
Description	Default value:	
Format: 0xSSSSIIII (highword = subindex, lowword = index)	0x00002B0D	
MAC address object		0x200A [11]
Description	Default value:	
Format: 0xSSSSIII (highword = subindex, lowword = index)	0x00002B6A	
IP address object		0x200A [12]
Description	Default value:	
Format: 0xSSSSIII (highword = subindex, lowword = index)	0x00012B6D	
IP subnet mask object		0x200A [13]
Description	Default value:	
Format: 0xSSSSIIII (highword = subindex, lowword = index)	0 x00022B6D	
IP gateway address object		0x200A [14]
Description	Default value:	
Format: 0xSSSSIIII (highword = subindex, lowword = index)	0 x00032B6D	
IP scan names object		0x200A [15]
Description	Default value:	
Format: 0xSSSSIIII (highword = subindex, lowword = index)	0x00002B6E	
EoE IP address object		0x200A [16]
Description	Default value:	
Format: 0xSSSSIII (highword = subindex, lowword = index)	0x00012B6C	
EoE subnet mask object		0x200A [17]
Description	Default value:	
Format: 0xSSSSIIII (highword = subindex, lowword = index)	0x00022B6C	
EoE gateway address object		0x200A [18]
Description	Default value:	
Format: 0xSSSSIIII (highword = subindex, lowword = index)	0x00032B6C	

10.2.2 Configuration of the diagnostic interface on the devices of control type A and K

The diagnostic interface can be configured on the devices of control type A and K via the following options.

Index	Id-Text	Name	Function
0x2B0E	fb13	DIN66019 node id	Node address of the unit
0x2B0D	fb14	DIN66019 baud rate	Baud rate
0x200A	de10	operator cfg data	Structure with configuration data for F6 / S6 operators and for connection to the file system

10.2.2.1 DIN66019 node id

In the KEB DIN66019-II protocol, each node is identified by its own node address. Each node has a separate object directory.

On the devices of control type A and K there is only one object directory. Thus there is one DIN66019-II node and one variable node address per device.

fb13	DIN66019 node id	0x2B0E	
Value	Meaning	Note	
0-238	Node address	Default value = 1	

To enable (e.g.) an automated detection of device replacement, the default value in productive systems should not be used.

10.2.2.2 DIN66019 baud rate

The communication speed can be adjusted via the baud rate. The following baud rates are available depending on the control type.

fb14	DIN66019 baud rate	0x2B0F
Value	Meaning	Note
5	38400 bit/s	Default value
9	115200 bit/s	
11	250000 bit/s	

NOTICE

The baud rate is 38400 bit/s after a power-on reset or after switching on of the device and must be switched from the DIN66019 master to another value, if required. The baud rate is reset to 38400 bit/s after approx. 10s if the interface is not used.

10.2.2.3 Operator config data

An operator connected to the device via the diagnostic interface requires (for optimal operation) information about the characteristics of the diagnostic interface and the object directory.

These are provided via the structure de10 "Operator config data".

de10	operator cfg data			0x200A
Subidx	Meaning			Note
0	Structure length	byte	RO	
1	idx start object	long	RW	Contains the index and subindex of the object which
				is displayed by the operator after the start.
2	supported baud rates	long	RO	List of supported baud rates
3	baud rate addr	word	RO	Address of the object to change the baud rate.
4	software version addr	long	RO	Address of the object of the software version.
5	software date addr	long	RO	Address of the object of the software date.
6	supported services 31-0	long	RO	List of supported DIN66019 services (31-0)
7	supported services 63-32	long	RO	List of supported DIN66019 services (63-32)
8	watchdog addr	long	RO	Address of the object of the watchdog function.
9	com mode	long	RW	Communication modes (see 0)

idx start object		0x200A [1]
Description		
Format: 0xSSSSIIII (highword = subindex, lowword = index)		
supported baud rates		0x200A [2]
Description	Default value:	
Bit 0: Baud rate index 0 (1200 bit/s)	0x00000A20	
Bit 1: Baud rate index 1 (2400 bit/s)	(Bit 5, 9 and 11)
Bit 2: Baud rate index 2 (4800 bit/s)		
Bit 3: Baud rate index 3 (9600 bit/s)		
Bit 4: Baud rate index 4 (19200 bit/s)		
Bit 5: Baud rate index 5 (38400 bit/s)		
Bit 6: Baud rate index 6 (55500 bit/s)		
Bit 7: Baud rate index 7 (57600 bit/s)		
Bit 8: Baud rate index 8 (100000 bit/s) Bit 9: Baud rate index 9 (115200 bit/s)		
Bit 9: Baud rate index 9 (115200 bit/s) Bit 10: Baud rate index 10 (125000 bit/s)		
Bit 11: Baud rate index 10 (125000 bit/s) Bit 11: Baud rate index 11 (250000 bit/s)		
Bit 12: Baud rate index 11 (250000 bit/s)		
baud rate addr		0x200A [3]
Description	Default value:	
Format: 0xIIII (index, subindex always 0, only VAR objects)	0x2B0E	
software version addr		0x200A [4]
Description	Default value:	
Format: 0xSSSSIIII (highword = subindex, lowword = index)	0x00002010	
software date addr		0x200A [5]
Description	Default value: 0x00002011	
Format: 0xSSSSIIII (highword = subindex, lowword = index)		
supported services (31-0)	0x200A [6]	
Description		
Bit 31 = service 31 Bit 0 = service 0	0.0004.571	
supported services (63-31)	0x200A [7]	
Description Bit 60		
Bit 63 = service 63 Bit 32 = service 32		

watchdog addr							
Description	Default value:						
Format: 0xSSSSIIII (highword = subindex, lowword = index)	-1 (not support	ed)					
com mode		0x200A [9]					
Description	Default value:						
0: Default communication mode	0						
1: KEB FTP Modus							

10.2.3 Communication modes

The selection of the communication mode is controlled via the following object:

Index	Id-Text	Name	Function
0x200A[9]	de10	Com mode	Selection of the communication mode

Value	Name	Note
0	Standard	Access to the object directory via DIN66019
1	KEB-FTP	Access to the internal file system via KEB-FTP

Switching into the KEB-FTP mode via de10 is only possible if the device is in one of the following operating modes:

- Fault
- Switch on disabled

If the drive is in another operating state, the attempt to change into the KEB-FTP mode is acknowledged with "Operation not possible".

The communication mode controlled via de10 only refers to the diagnostic interface. Whether access to the object directory / file system is possible via the fieldbus interface is controlled by the active fieldbus system. Access to the file system via the fieldbus interface is independent of the operating state.

Access to the object directory via the fieldbus interface can be restricted in the communication mode "KEB-FTP". In order to transmit the information to the higher-level control that the drive can not be controlled by the control, the remote bit is set to zero in the status word.

The change back into the communication mode 0 occurs via a command of the KEB FTP master, after 10s timeout or with the next power-on.

10.3 Fieldbus interface

10.3.1 General information about the fieldbus interface

The fieldbus interface and the different fieldbus systems are described in detail in an additional document, independent of the control board in the Programming Manual | Fieldbus systems.

The Programming manual | Fieldbus systems can be downloaded from the KEB website. Registration is required. The Programming Manual | Fieldbus systems contains information about the following topics:

- Commissioning of the fieldbus interface
- Diagnosis and configuration of the fieldbus interface via the parameters of the fb group
- Handling of process data communication
- Mapping objects in the pr group
- Detailed description of the KEB-specific implementation of the fieldbus systems CANopen, EtherCAT, VARAN, PROFINET, POWERLINK and EtherNet/IP on the F6 and S6 devices

10.3.2 Use of KEB diagnostic tools via the fieldbus interface

Since DIN66019 telegrams can also be sent via Ethernet, a KEB diagnosis can also be carried out via the Ethernet fieldbus interface. For this, the active fieldbus system must support a corresponding Ethernet channel.

An EoE connection is required at EtherCAT, at PROFINET the parallel Ethernet channel must be used to use KEB diagnostic tools via the fieldbus interface. At Ethernet/IP, no additional settings are necessary at fieldbus level.

For the fieldbus systems CANopen, VARAN and POWERLINK it is not possible to work with KEB diagnostic tools via the fieldbus interface.

If there are several DIN66019 nodes on a KEB device, as for example on the devices of the control type P, incoming DIN66019 telegrams are transmitted to the node address set in fb16 fieldbus node injection. (see chapter 10.2.1 Configuration of the diagnostic interface on the devices of control type P)

10.4 COMBIVIS 6 process data assistant

Process data mapping can be adjusted via the process data assistant in COMBIVIS 6. COMBIVIS 6 uses the KEB specific objects to describe the process data mapping for setting the data.

At this all limit conditions are automatically observed:

- Data type (depending on the data type, the type and offset are determined automatically).
- Characteristics
 (the mapping is permitted or inhibited depending on the object characteristics (RO, RW, mapping permitted)

The objects are just drag and drop with the mouse in the appropriate process data buffer.

The assistants indicate how many PDOs are available, how many parameters can be used per PDO and how many bytes are available per PDO.

10.4.1 Process data assistant for VARAN

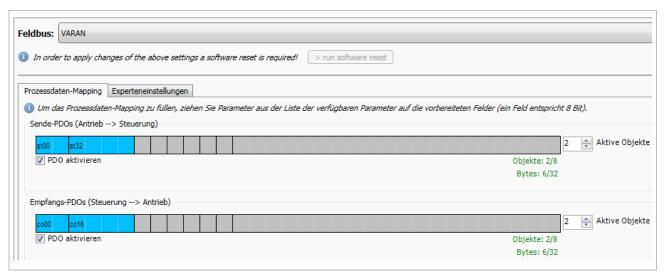


Figure 130: Process data assistant for VARAN

10.4.2 Process data assistant for EtherCAT

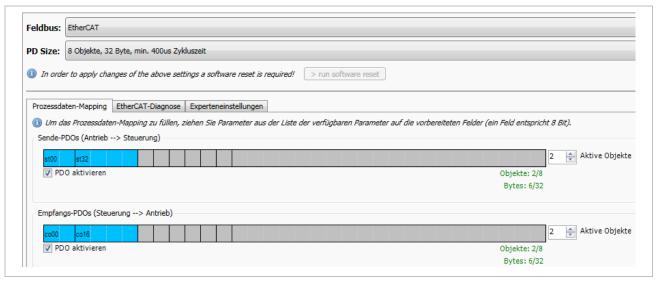


Figure 131: Process data assistant for EtherCAT

10.4.3 Process data assistant for CAN

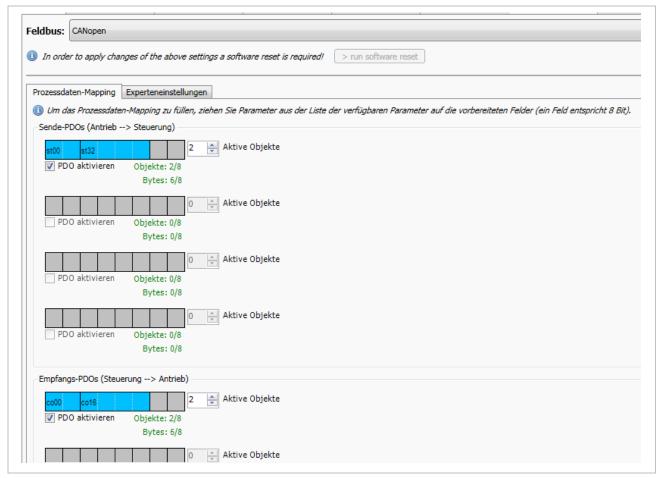


Figure 132: Process data assistant for CAN

10.5 Connection to the file system

The drive controller has a file system to store the recipe (download) files.

COMBIVIS 6 contains the program KEB FTP, which allows access to these files via the diagnostic interface. => See also the help contained in COMBIVIS 6.

The used interface adapter must support a direct connection.

- Connection directly to serial D-SUB 9-pole protocol DIN 66019 II: RS-232 cable PC / operator / Part No. 0058025-001D
- ➤ KEB USB serial converter use only if the nameplate contains the imprint FTP Ready, otherwise KEB FTP does not work.

10.5.1 FTP connection set-up

Open KEB FTP and make the following settings. Do not press CONNECT yet! Enter the used interface in COM.

With KEB FTP only 115200 baud are possible in conjunction with the drive controller, other settings do not work.

Figure 133: Set the baud rate

Set de10 operator cfg data SubIdx 9 com mode to 1 \Rightarrow to activate the FTP protocol with 115200 baud in the drive controller. FTP access is only possible if the drive does not modulate. Otherwise, the write access to this object is acknowledged negatively.

Then quickly disconnect the connection to the inverter in the communication settings.

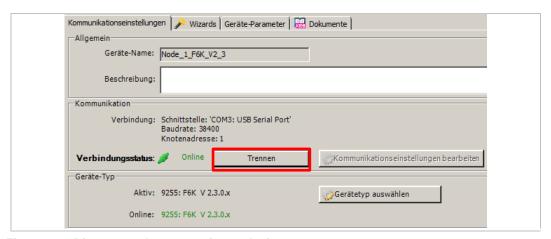


Figure 134: Disconnect the connection to the inverter

Then press CONNECT.

Figure 135: Connect drive controller

The status in KEB FTP should change to Connected, the connection is established.

If the time out time of 10s expires after writing de10[9]=1 without creating an FTP connection, the FTP mode is automatically left again.

If the connection has been established, the recipe files can be copied via KEB-FTP into the file system of the inverter.

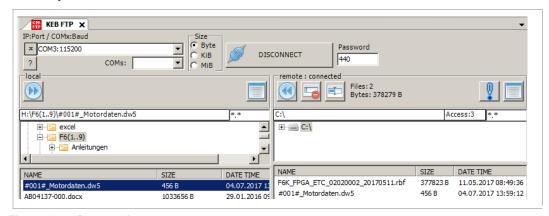


Figure 136: Copy recipe

11 Special Functions

Some parameters are only used in special functions.

These parameters are described in a separate manual.

The following special functions are implemented:

11.1 Compatibility objects

The description of the parameter ud 50 can be found in the Programming Note www.keb.de/fileadmin/media/Techinfo/dr/pn/ti_dr_pn-f5-comp-objects-00005_de.pdf

Index	Sub- ldx	CA N	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOAD								
	0		UINT8	UINT8	UINT8	UINT8	UINT8	UINT8	UINT8	UINT8	UINT8		F5 compatibility objects				1	1		х	х	
	1		UINT16		option code	255	0	0	1	1												
	2		UINT16		customer control- word 1	65535	0	0	1	1		х										
	3		H IINH 161	customer control- word 2	0	0	0	1	1		х											
	4		UINT16		customer status- word 1				1	1		х	х									
	5		UINT16		customer status- word 2				1	1		х	х									
3032h	6	ST	INT16	ud50	procentual set speed	16384	-16384	0	100	16384	%	х		9284, 9285								
	7		INT16		actual speed	1			100	16384	%	Х	Х									
	8		INT16		actual torque				1	1	Nm	Х	Х									
	9		INT16		inverter tempera- ture				1	1	°C	х	х									
	10	•			II	INT16	INT16	INT16	INT16		motor tempera- ture				1	1	°C	х	х			
	11		UINT16	UINT16	JINT16	inverter tempera- ture				1	1		х	х								
	12		UINT16		relative load				1	1	%	Х	Х									
	13		UINT16		reference speed	65535	10	3000	1	1	rpm	Х										

11.2 Power limitation

The description of these parameters can be found in the additional manual power-dependent speed limitation

 $\underline{www.keb.de/fileadmin/media/Techinfo/dr/pn/ma_dr_f6_Leistungsbegrenzung_20203475_deu.pdf}$

Index	Sub- Idx	CA N	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOAD
3028h	0	V	UINT16	ud40	vl velocity limit options	65535	0	0	1	1				✓
	0		UINT8		maximum speed				1	1			Х	
	1		INT32		max speed mot for	32000	0	2000	1	1	rpm			
3029h	2	ST	INT32	ud41	max speed mot rev	32000	0	2000	1	1	rpm			✓
	3		INT32		max speed gen for	32000	0	2000	1	1	rpm			
	4		INT32		max speed gen rev	32000	0	2000	1	1	rpm			
	0		UINT8		lower limit level				1	1			Х	
	1		INT32		lower limit level mot for	32000	0	1000	1	1	rpm			
302Ah	2	ST	INT32	ud42	lower limit level mot rev	32000	0	1000	1	1	rpm			✓
	3	- H	INT32	INT32	lower limit level gen for	32000	0	1000	1	1	rpm			
	4		INT32	INT32	lower limit level gen rev	32000	0	1000	1	1	rpm			
	0		UINT8		average times				1	1			Х	
302Bh	1	ST	UINT16	ud43	settle time	8000	0	100	1	1000	s			✓
	2		UINT16		average time dyn limit calculation	8000	0	1000	1	1000	s			
	0		UINT8		maximal power				1	1			Х	
	1		UINT32		max power mot for	1000000	0	4000	1	1000	kW			
302Ch	2	ST	UINT32	ud44	max power mot rev	1000000	0	4000	1	1000	kW			✓
	3		UINT32		max power gen for	1000000	0	4000	1	1000	kW			
	4		UINT32		max power gen rev	1000000	0	4000	1	1000	kW			
302Dh	0	<	INT16	ud45	power hysteresis	2000	1000	1050	1	1000				✓
302Eh	0	V	UINT32	ud46	slow torque PT1	500000	0	20000	1	1000	ms			√
302Fh	0	٧	INT32	ud47	speed hysteresis for ramp out	2621440 00	0	40960	1	8192	rpm			√
3030h	0	٧	INT32	ud48	speed level for cont calc	2621440 00	0	40960	1	8192	rpm			√
3031h	0	V	INT16	ud49	dyn vel limit state display				1	1		х	х	√

11.3 Liquid cooling management

There are 2 structures for handling the cooling management for inverter and motor: ud53 liquid cooling control and ud55 motor cooling control.

Except for the selection and type of the actual value setting, both controls are absolutely identical.

The output signal of the control can alternatively be assigned to a digital output or an analog output.

NOTICE

Behaviour in case of sensor error or missing mains supply

In error case (sensor short-circuit or sensor breakage, and in case of a missing power unit ready signal (missing mains voltage), the real temperature cannot be measured. Due to the risk of condensation, cooling is deactivated in these cases.

11.3.1 PI controller

11.3.1.1 Heat sink cooling

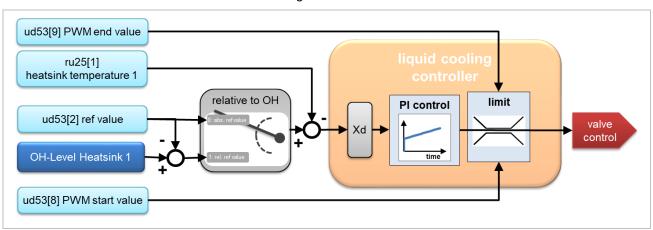


Figure 137: Overview controller

With this type of control, either a fixed setpoint or the distance of the heat sink temperatures from the corresponding OH threshold is preset.

ud53[1]		source select				
Bit	Value	Plaintext	Notes			
0	1	activate	Activation of the controller			
1	2	HS_1	The selected temperatures are used as actual values for the PI controller.			
2	4	HS_2	Setting depends on inverter hardware. Currently, the setting must alwa			
3	8	HS_3	be 2: HS_1			

ud53	<u>[1]</u>	source select					
Bit	Value	Plaintext	Notes				
	46	wa alkiwa ta Old	The maximum difference between the selected temperatures and 0: the setpoint ud53[2] ref value is assigned to input Xd of the PI controller				
4	16	realtive to OH	OH temperature - ud53[2] ref value is the setpoint of the respective heat sink temperature. The largest difference between setpoint and actual value is assigned to input Xd of the PI controller				
5	32	manual set- ting	The PWM control setting is preset manually 1: The display of ud53[5] and ud53[11] also displays the manually preset value.				

ud53[2]	ref value	
Value	Meaning	
0100 °C	Set temperature or distance to OH threshold	

11.3.1.2 Motor cooling

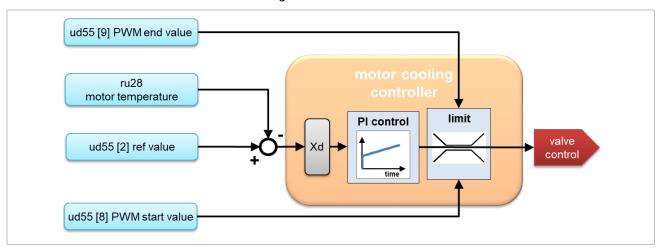


Figure 138: Overview controller motor cooling

ud55	[1]	source select				
Bit	Value	Plaintext	Notes			
0	1	activate	Activation of the controller			
5	32	manual set- ting	The PWM control setting is preset manually 1: The display of ud55[5] and ud55[11] also displays the manually preset value.			

ud55[2]	d55[2] ref value	
Value	Meaning	
0 100 °C	0 100 °C Set temperature of the motor	

11.3.1.3 Generally valid Pi controller parameters

ud53[3]/ ud55[3]	Kp [%PWM load per 1K]	
Value	Meaning	
0100	Proportional component of the controller	

ud53[4] / ud55[4]	Tn	
Value	Meaning	
0.1500000.000 ms	0 = off, Tn of the controller	

ud53[5] / ud55[5]	PI control out	
Value	Meaning	
0.1100.00%	Output value of the controller	

11.3.2 Manual setting

If the value 32: manual is selected in ud53[1] or in ud55[1] source select, the manual setting is output instead of the PI controller output signal.

ud53[6] / ud55[6]	manual setting	
Value	Meaning	
0100.0%	Control factor of the PWM / analog output	

Parameters ud53 / ud55 [8] PWM start value and ud53 / ud55 [9] PWM end value are not considered. Only ud53 / ud55 [7] PWM period and ud53 / ud55 [10] PWM minimal pulse length remain effective.

11.3.3 **PWM**

11.3.3.1 Parameterization of the PWM

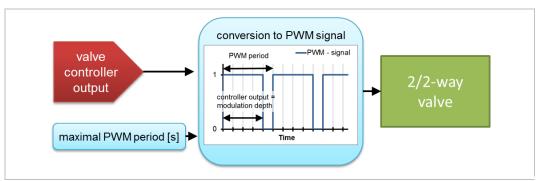


Figure 139: Structure PWM for cooling control

ud53 / ud55 [7]	PWM period		
Value	Meaning		
4.020.0 seconds	Value range ud53	Cools donation of the DIAINA signal	
4.0120.0 seconds	Value range ud55	Cycle duration of the PWM signal	

ud53 / ud55 [8]	PWM start value	
Value	Meaning	
0100% minimum PWM On pulse, which is always output even if the heat sink temperal is lower than the setpoint.		at sink temperature

ud53 / ud55 [9]	[9] PWM end value	
Value	Meaning	
0100%	maximum PWM control factor	

ud53 / ud55 [10]	PWM minimum pulse length	
Value	Meaning	
ud53[10]: 05.00 seconds	The result of the PI controller output * PWM period is the length of the set-on pulse. The pulse is suppressed if this set-on pulse is < ½ * PWM minimal pulse length.	
ud55[10]: 06.00 seconds	If the set-on-pulse length is > $1/2$ * PWM minimal pulse length bu minimal pulse length, PWM minimal pulse length is already outp	

Example:

The PWM period duration is set to 8 seconds. The minimum pulse length is set to 400ms. \Rightarrow 400ms = 5% of the period duration.

If ud53[10] PWM actual load < 2.5%, the pulses are suppressed

If ud53[10] PWM actual load is between 2.5% and 5%, 400ms pulses are output

If ud53[10] PWM actual load is greater than 5%, the pulse length is proportional to the controller output.

ud53 / ud55 [11]	PWM actual load	
Value	Meaning	
0 100.00%	Control setting of the PWM in % At the beginning of each new PWM period the actual control set from the average of all PI controller output values of the last per	

11.3.3.2 Display of the PWM modulation

ud54 heatsink cooling PWM out state ud56 motor cooling PWM out state		
Value	Meaning	
0,1	PWM out state 1 = On-pulse	

11.3.4 Signal output

11.3.4.1 via digital output

To output the PWM signal via a digital output, the following setting must be made in the do parameters:

Heatsink cooling:

do01[1] flag operand A = 60: heatsink cooling PWM out state (ud54)

Motor cooling:

do01[1] flag operand A = 64: motor cooling PWM out state (ud56)

always:

```
do02[1] flag operand B = "28: level 2" (do06)
do03[1] flag operator mode = "5: !=" (unequal)
=> if ud54 is unequal 0, the digital output controlled by flag 1 is set.
do20 select flag O1 = "1: F1" => the PWM output signal is output via Out1.
```

11.3.4.2 via analog output

Heatsink cooling:

an37 ANOUT1 function = "15: PI Control Out" => ud53 [5] PI control out is output via the analog output.

Motor cooling:

an37 ANOUT1 function = "16: PI Control Out" => ud55 [5] PI control out is output via the analog output.

always:

Scaling factor: 100% controller output = 10V analog output

The gain / offset of the analog output can be adjusted with an39 .. an41.

12 Safety modules

12.1 FSoE Watchdog time type 3 (only F6-A / S6-A)

The minimum watchdog time is specified with 80ms.

The watchdog time for FSoE should be set higher, because the runtime of the safe PLC and the EtherCAT cycle time must be considered.

If a watchdog time lower than 80ms is set, it will be rejected by the safety module.

12.2 FSoE Watchdog time type 5 (only F6-P)

The minimum watchdog time is specified with 35ms.

The watchdog time for FSoE should be set higher, because the runtime of the safe PLC and the EtherCAT cycle time must be considered.

If a watchdog time lower than 35ms is set, it will be rejected by the safety module.

12.3 Safety module objects

There are additional functional (not safety-related) objects for the safety module. These objects are in the fs: FSoE drive profile parameter group.

Index	Name	affects on KEB specific object:	Type 3	Type 5
0x6600	Time Unit	Resolution of objects which are timespecific.	•	
0x6601	Position Unit	Resolution of objects which are position-specific.	•	
0x6602	Velocity Unit	Resolution of objects which are speed-specific.	•	
0x6603	Acceleration Unit	Resolution of objects which are acceleration-specific.	•	
0x6611	Safe position actual value 32Bit	Position calculated by the safety module. The number of decimal places is changed by the safe configuration parameter number of bits per revolution.	•	
0x6613	Safe velocity actual value 32 Bit	Speed calculated by the safety module. The scaling is 19 bit integer positions and 13 bit decimal places.	•	
0x6620	Safe Controlword	Safety-oriented controlword.	•	
0x6621	Safe Statusword	Safety-oriented statusword.	•	

Index	Name	affects on KEB specific object:	Type 3	Type 5
0x6630	Restart_Ack (support)	Support of the error acknowledgement function.	•	
0x6640	STO support	Support STO	•	
0x6641	STO Restart_Ack_behaviour	If another safety function detects an error, this must be acknowledged by the acknowledge bit via FSoE.	•	
0x6650	SS1 support	Number of supported instances of SS1. (8 pieces)	•	
0x6651	T_SS1 (SS1C)	The time until the safety function STO is executed. Unit ms.	•	
0x6656	a_ss1 32Bit	The acceleration for SS1B.	•	
0x6660	SBC support	Number of supported instances of SBC (safe brake control). (8 pieces)	•	
0x6668	SOS support	Number of supported instances of SOS (safe operation stop). (8 pieces)	•	
0x666A	S_Zero_SOS 32Bit	Position window when the safety function Safe operation stop is executed.	•	
0x6670	SS2 support Number of supported instances of SS2. (8 pieces)		•	
0x6671	T_SS2 (SS2C) The time until the safety function SOS is executed. Unit ms.		•	
0x6674	A_ss2 32Bit	The acceleration for SS1B.	•	
0x6677	Error Reaction SS2	The error reaction for the safety function SS2. Either SOS or STO.	•	
0x6690	SLS support	The safety module supports 8 instances of SLS.	•	
0x6693	N_SLS_32_Bit The upper speed limit of SLS. The scaling is 19 bit integer positions 13 bit decimal places.		•	
0x6698	Error Reaction SLS	Either STO or SS1.	•	
0x66A0	SLP support	Number of supported instances of SLP. (8 pieces)	•	
0x66A2	S_UL_SLP_32Bit The upper position limit of SLP.		•	
0x66A4	S_LL_SLP_32Bit The lower position limit of SLP.		•	
0x66A5	Error Reaction SLP Either STO or SS1.		•	
0x66A8	SMS support Number of supported instances of SMS. (8 pieces)		•	
0x66AA	N_pos_max_SMS_32Bit	The upper speed limit of SMS. The scaling is 19 bit integer positions and 13 bit decimal places.	•	
0x66AC	N_neg_max_SMS_32Bit	The lower speed limit of SMS. The scaling is 19 bit integer positions and 13 bit decimal places.	•	

Index	Name	affects on KEB specific object:	Type 3	Type 5
0x66AD	Error Reaction SMS	Error reaction SMS. Either STO or SS1.	•	
0x66B8	SLI support	Number of supported instances of SLI. (8 pieces)	•	
0x66BA	S_UL_SLI_32 Bit	The upper position limit. This value is the adjusted position window / 2nd unit revolutions.	•	
0x66BC	S_LL_SLI_32 Bit	The lower position limit. This value is the adjusted position window / 2nd unit revolutions.	•	
0x66BD	Error Reaction SLI	Either STO or SS1.	•	
0x66D0	SDIp support	The safety module supports SDI positive.	•	
0x66D1	SDIn support	The safety module supports SDI negative.	•	
0x66D3	S_Zero_SDI_32Bit	The drive must not leave the adjusted position window at motor standstill. Unit revolutions.	osition window at motor standstill.	
0x66E0	SSM support	Number of supported instances of SSM (Safe speed monitoring). (8 pieces)	•	
066E2	N_UL_SSM_32Bit	The upper speed limit for SSM. The scaling is 19 bit integer positions and 13 bit decimal places.		
0x66E4	N_LL_SSM32Bit The lower speed limit for SSM. The scaling is 19 bit integer positions and 13 bit decimal places.			
0xE600	FSoE Slave frame elements of the FSoE which are sent to the safe reference (raw data)		•	
0xE601	FSoE SafeInputs	The elements of the FSoE frames which are sent to the safe master.	•	
0xE700	FSoE Master frame ele- ments	The elements of the FSoE frames which are sent by the safe master.	•	
0xE701	FSoE Master frame ele- ments	The elements of the FSoE frames which are sent by the safe master.	•	

Index	Name	affects on KEB specific object:	Type 3	Type 5
0xE800	Safety Device Info	Information about the safety module. This information includes: 1. COMBIVIS CRC: The CRC of the configuration data in the safety module. 2. Parameter main version: This version is currently 1 and will be transmitted to the safety module when FSoE is started. 3. Parameter sub version: This version can be set by the user in the safe FSoE configuration and read out by the safety module. 4. FSoE Data length: The data length of the safe FSoE data. This data length is set by the safety-oriented configuration of the safety module.	•	
0xE801	Safety Receive PDO mapping (Control - >Drive)	The active mapping in the safety module (for internal purposes)	•	
0xE802	Safety Transmit PDO mapping (Drive -> Control)	The active mapping in the safety module (for internal purposes)	•	
0xE803	Safety Device unit configuration	Unit of position and speed transmitted to the safety module via FSoE. This is the number of decimal places (bits for the decimal places). The default setting is 0 bits for the decimal places.	•	
0xE80F	FSoE Safetymodule PD init	Only for internal purposes.	•	

Index	Name	affects on KEB specific object:	Type 3	Type 5
0xE901	FSoE Connection Communication Parameter	Communication parameter. These parameters include: 1. Version (version number is always 1.) 2. Safety Slave Address. The safety module address set in the configuration data. 3. FSoE ConnectionID. This will be transmitted to the slave during FSoE start-up. 4. Watchdog Time. The watch-dog time will be transmitted to the slave during FSoE start-up. 5. Unique Device ID. The serial number of the safety module. 6. Connection Type. The value is always 1, for slave. 7. Com Parameter Length. The communication parameter length is always 2 bytes. 8. Appl Parameter Length. The allication parameter length is always 20 bytes.	•	
0xF980	Device Safety Address	The safety module address set in the configuration data.	•	

12.4 Safety module diagnostic objects

For the diagnosis of safety-relevant errors, certain parameters of the safety modules (3 and 5) are available and readable in the Combivis parameter group "sm: safety module parameters". Furthermore, it is possible to set a defined reaction to "STO" and "Fail Safe" in the drive controller. These objects and functions require prior knowledge of the contents of the safety module manuals and the handling of the safety modules in COMBIVIS.

- The following objects (sm group) are currently only available for safety module types 3 and 5. For other types, these objects are either not displayed or filled with a "0" (e.g. for type 1).
- Furthermore, the objects (sm group) shall not be used for safety-related/critical functions. They are only used for diagnostic support in case of problems and errors.

sm10	inverter reaction in case of "fail safe"		0x3C0A
Value	Name Note		
0	fault If fail safe is active, error "140: ERROR Fail Safe" is set.		e" is set.
1 - 5	reserved	reserved	
6	warning	If fail safe is active, the warning "fail safe" is set.	
7	off	no response	

sm11	inverter reaction in case of "STO"		0x3C0B
Value	Name Note		
0	fault	If STO is active, error "139: ERROR STO" is set.	
1 - 5	reserved	reserved	
6	warning	If STO is active, the warning "STO" is set.	
7	off	no response	

The drive controller provides an object in which the customer can configure a visual response to a triggered error by STO or Fail Safe. The ("OPT") LED (red) on the control boards is used for this.

sm12	opt. inverter reaction in case of "STO" or "fail safe" 0x3C0C		0x3C0C
Value	Name	Note	
0	none	There is no optical response in case of "Fail Safe" or STO.	
1	enable (OPT-)LED	If a warning or error message has been configured as response to "STO" or "Fail Safe" and this bit is active, a red LED (->"OPT" LED) at the inverter starts to light up (see 7.5 Status LED).	

The error and warning information for STO or Fail Safe are also available in the do parameters for switching an output.

The following table shows the safety module-specific diagnostic parameters. These are read out from the safety module via an internal communication channel and correspond to the parameters that are visible in the Safety Wizard. They are for diagnostic purposes only. Subindices 1 to 14 are identical for safety modules 3 and 5. Subindices 15 to 18 are only available in safety module 5.

Index	Id-Text	Sub-Idx	Name	Function
		0	safety module (number)	-
		1	enabled safety function	enabled safety functions
		2	bus safety function state	Safety functions enabled via bus
		3	global safety state	Global state of the safety module
		4	error state	Error state of the safety module
		5	last error / warning	Last error state of the safety module
		6	bus error	Bus error state of the safety module
		7	I/O state	State of the inputs/outputs
0x3C03- 0x3C05	sm03- sm05	8	encoder (-less) speed	Speed (detected with/without encoder depending on safety module)
		9	encoder position (full rounds)	Position in full revolutions (detected with/without encoder depending on safety module)
		10	encoder position (partial rounds)	Position in partial revolutions (detected with/without encoder depending on safety module)
		11	safety module date and time	Time/date of the safety module
		12	safety module LED blinking	LED status/control of the safety module
		13	safety fieldbus type	configured bus type
	14	safety fieldbus data length	configured bus data length	
0x3C05	sm05	15	electrical current in percent (0.001% resolution)	electrical current in percent
0x3C05	sm05	16	electrical current speed	
0x3C05	electrical current position actual value (full rounds) sm05 sm05 sm05 sm05 sm05 sm05 speed and position data calcular rent values.		Speed and position data calculated from the current values.	
0x3C05	sm05	18	electrical current position actual value (partial rounds)	

Via these parameters it is also possible to change the time of the safety module and to activate the LED flashing. Due to a limitation in the safty module software, the time can only be adjusted once without a user log-in with minimal authorization level (or performing a power-on reset). To change the time, only subindex 11 of the above-mentioned safety module-specific parameter group must be set to "1". Then the time is transferred from pa-

rameter ru52 to the safety module. Please note that only data from 01.01.2014 are accepted by the safety module type 5. By writing "2" in subindex 11, the time is taken over from the safety module into parameters ru52 and ru53.

Subindex 12 can be used to activate the LED flashing. This indicates the current flashing status of the safety module. "1" indicates "flashing active", "0" indicates "flashing inactive". Writing the corresponding values to this parameter leads to the respective functionality.

In addition, it is possible to read out the last ten protocol or log entries of certain error categories of the safety module, which can also be read out via COMBIVIS. For this purpose, a configuration parameter (sm18), a status parameter (sm19) and ten protocol information parameters (sm20 to sm29) are available.

Parameter sm18 is used to select the error category to be read out. Writing the parameter starts the readout of the log.

sm18	log read out type 0x3C12			
Value	Name	Note		
-1	none	The reading of the log is deactivated.		
0	error	The entries in the "error" category are read out from the safety module when this value is written.		
3	safety function request The entries in the "safety function request" category are read out from the safety module when this value is written.			
5	configuration errors The entries in the "configuration errors" category are read out from the safety module when this value is written.			
6	bus errors The entries in the "bus errors" category are read out from the safety module when this value is written.			
7	bus configuration errors The entries in the "bus configuration errors" category are read out from the safety module when this value is written.			
8	bus safety function re- quest The entries in the "bus safety function request" category are read out from the safety module when this value is written.			

Parameter sm19 indicates the actual status of the readout and possible errors. It can therefore only be read.

sm19	log read out state	log read out state 0:	
Value	Name	Note	
-1	log read out timeout error	The readout could not be completed within 5 section to the status and connection to the safety module a	
0	nothing to do	-	
1	log read out active	The log is currently being read out.	
2	log read out finished	ed The log read out was finished successfully.	

The parameters read from the safety module are written in structures sm20 to sm29 and contain information on errors of the category selected in sm18. The structure corresponds to the structure of the protocol in the Safety Wizard in COMBIVIS 6. The entry with the lowest log entry number (-> "log entry 0") contains the latest information. The "date and time" specification can be inconsistent, depending on the time of configuration by the user. However, the sequence of parameters sm20 to sm29 is always correct. Sub-indices 5 and 6 differ only in the plaintexts assigned to the explicit values. They are filled according to the selected category (see sm18). Thus, sub-index 5 contains the details of categories 3 and 8, whereas sub-index 6 contains the details of categories 0, 5, 6, and 7. The value of the sub-index that is not required is filled with "0" (the plaintext for "0" is consequently invalid in this case).

Index	Id-Text	Sub-Idx	Name	Function	
	0	log entry [09]	Number of the log entry		
		1	date and time	Date and time	
	0x3C14- 0x3C1D sm29	2	position	Postition	
0x3C14-		x3C14- sm20-	3	speed	Speed
0x3C1D sm29		4	time slice per 62.5 μs	Time slice per 62.5µs grid for more precise error analysis	
	5	details of "(bus) safety function request"	Details of the safety function request		
		6	details of "error"	Error details	

13 Recipe management (storage of parameter files in the drive controller)

Several recipes (parameter files / name *.dw5) can be stored in the file system of the device (see chapter 10.5 Connection to the file system).

The recipes contain objects which can be written to the object directory of the drive controller during runtime.

The download of a recipe is triggered by writing on object ud04 or the edge of a previously configured digital input.

To transfer recipes, an access level is requested in -> COMBIVIS Manual Chapter "Device Memory Wizard".

13.1 Definition of terms

Recipe is the list of parameter addresses and associated values which can be executed on request (i.e. the parameters are written with the appropriate values). In the further process of the document, the term recipe is synonymous with download list or configuration list.

13.2 Basic function

13.2.1 Contents of the configuration lists

Recipes contain only parameters to be written.

Each entry contains the following information:

- Address (=Index) of the parameter to be written
- SubIndex of the parameter to be written
- Value to be written

The * .dw5 file format is used

13.2.2 Storage / identification of the recipes

Recipes are stored as files in the file system of the devices.

The file name must have the following structure in order to recognize a recipe in the drive controller:

The recipe files are identified by a "recipe ID". This is a 3-digit number between 1 and 240. This must be enclosed by "#" characters at the beginning of the file name.

This means, the first five characters of the file name must correspond to the following example: #001# \Rightarrow A three-digit number enclosed by # characters

The remainder of the file name is irrelevant to the function and can be used to be written. A total of 60 characters can be used.

Each number may only exist once in the file system. If there are still several lists with the same ID in the file system, the first recipe will be used.

Example: A recipe with motor data should be available under ID 5:

⇒ Possible name for the list: #005#_Motordownload_1.dw5

There are 2 special functions for the recipe download:

By the naming #pon#, a recipe download is automatically triggered after power on or software reset by co09.

By the naming #def#, a recipe download is automatically triggered after loading the default values.

13.2.3 Limitations

- ► The maximum number of recipes is limited to 255, the values of 240 ... 255 are reserved for KEB internal functions.
- The maximum number of parameters per list is limited by the size of the file system.
- ▶ In the KEB file system, each file always occupies a multiple of the block size of the storage medium (64Kbyte). With 1MB free memory, a maximum of 1024KB/64KB = 16 files can be stored (if the files are not larger than 64KB each).

13.3 Parameter structure

The following parameters are available for managing and execution of recipes:

Index	Id-Text	Name	Function
0x3002	ud02	recipe options	Options for recipe lists
0x3003	ud03	recipe inputs	Input selection to start the recipe download
0x3004	ud04	start recipe	Direct start of a recipe download, specifying a recipe ID
0x3007	ud07	recipe status	Status of the last started recipe download

13.3.1 Parameter "recipe options"

ud02	recipe options			0x3002	
Bit	Function	Valu	Plaintext	Note	
		е			
0 7	error be-	0	abort on error	Abort on first error	
07	haviour	1	ignore errors	Errors are ignored, the recipe download continues	
831	reserved reserved				

If different settings of the "error behaviour" are required, this object can be inserted into a recipe.

13.3.2 Parameter "recipe input"

ud03	recipe input 0x3003					
Bit	Function	Valu	Plaintex	Note		
		е	t			
0	l1	1	l1	Selection which of the inputs I1 to I8 can be used to activate a		
1	12	2	12	recipe download.		
				The input number is assigned to a recipe number: ⇒ I1 starts		
7	18	128	18	#001#, I2 starts #002#, etc.		
8	IA	256	IA	Software inputs, can be activated via the software outputs OAOC ⇒ IA starts #009#, IB #010# etc.		
9	IB	512	IB			
10	IC	1024	IC			
11	ID	2048	ID	Can only be activated with corresponding programming via di00 or di01/di02 \Rightarrow ID starts #012#,		
12	CW1	4096	CW1	Controlword inputs, can be activated via the controlword if programmed accordingly. ⇒ CW 1 starts #013#, CW 2 starts #014#		
13	CW2	8192	CW2			

The hardware inputs I1 to I8, the software inputs IA to ID and the control word inputs CW 1 and CW 2 can be used. Use of the STO inputs is not possible.

Up to 14 recipes can be selected with the digital inputs. Only the highest number is relevant. If, for example, I1 and I2 are activated, #002# is executed.

If such a programmed input is already set during power on, this recipe is automatically started. (If additionally a #pon# recipe is available, this will be started first and then the one selected by the input. This is only possible if Ud03 has been reactivated in #pon#).

NOTICE

If the highest number of the inputs selected for recipe selection in ud03 changes, a new recipe download is triggered. This is especially important for the software and controlword inputs.

If their status is influenced by the recipe download, this can trigger unwanted follow-up reactions.

Example:

- I1 is activated and IA is also activated by the software output OA
- Recipe #009# is executed
- The execution of this recipe causes that OA and also IA are no longer set
- Recipe #001# is executed immediately after completion of recipe #010# if I1 is still active.

NOTICE

The recipe activation runs in the non-interrupt controlled part of the software. The time to the start and the duration of the recipe execution depend on the time utilization of the control card software. This is dependent on a different variables, such as the type and operating point of the control, speed measurement, fieldbus functions, etc.

13.3.3 Parameter "start recipe"

Index	Id-Text	Name	Function
0x3004	ud04	start recipe	Start a recipe download by writing to this object.

The recipe download is started by writing the required recipe number. That means, the selected file is read from the file system and then written line by line into the parameters of the drive.

13.3.4 Parameter "recipe status"

All information about the status of the recipe download is displayed in the structure ud07 recipe status.

Index	Id-Text	Sub-Idx	Name	Function
0x3007	ud07	1	last successful recipe ID	ID of the last successfully executed recipe
		2	recipe download status	Status of the last started recipe download
		3	info recipe ID	ID of the last executed recipe download
		4	actual line	Last read line of the dw5 file
		5	error code	Error messages of the object dictionary

The following parameter contains the number of the last error-free transmitted recipe.

ud07[1]	last recipe id	0x3007 SubIdx 1	
Value	Name	Meaning	
0	not completed	As handshake as soon as a recipe download has been started.	
1253			
254	power on recipe (#pon#)	ID of the last successfully executed recipe	
255	default recipe (#def#)		

Parameter ud07[2] recipe status provides the following information:

ud07[2]	recipe download status		0x3007 Subldx 2
Value	Name	Meaning	
0	no recipe started	No recipe download completed	
2	running	Recipe download is currently running	
3	completed	Recipe download successfully completed (without	ut errors)
4	aborted after error	Recipe download aborted due to an error	
5	completed with errors	Download has been executed, errors have been occurred. The errors have been ignored due to the configuration (=> 13.3.1 Parameter "recipe options").	
6	recipe does not exist	The started recipe is not available.	

Parameter ud07[5] error code provides the following information:

ud07[5]	error code 0x3007			
Value	Name	Meaning		
0	OK (No error)			
1	invalid index			
2	invalid subindex	Corresponds to the error codes of the object dictionary		
3	invalid access			
4	data invalid			
5	read only	,		
7	invalid password			

If errors are ignored during the download (depending on parameter ud02) this parameter contains information about the error which occurred *last*.

13.4 Operating conditions

Only one recipe download can be executed at the same time. During the recipe download, the start of another will be prevented.

In addition, there are no special starting conditions.

The download can be started by digital inputs or by writing of ud04 start recipe.

Exceptions:

- ⇒ The download of the #pon# file occurs with starting the drive controller (power on or co09).
- ⇒ The download of the #def# occurs at default set loading (power on or co09, if co08 has been parameterized accordingly).

During downloading, the same checks are made for each individual write operation, likewise a write operation from an external source (e.g., COMBIVIS, external PLC, operator, etc.). The recipe management processes entries which contain a write request for a parameter (values WA/WO/RW in column "R/W").

Only write requests with index/subindex addressing are processed. (Default for all generation 6 devices).

All other entries (blank lines, pause, RO, set-addressed entries) are skipped.

14 Annex

14.1 Inverter parameters (address / resolution /type)

	RO	ReadOnly		
	nPD	not available for Proc	essDataC	Communication
Abbreviations			V	VAR
	CAN	CAN-OPEN type	ST	Structure
			Α	Array

For structures, the name of the structure is entered in the row of subindex 0 (number).

ru: run p	aramet	er												
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2C01h	0	V	UINT8	ru01	exception state				1	1		х	х	✓
2C02h	0	V	UINT32	ru02	warning bits				1	1		Х	х	✓
2C03h	0	V	UINT8	ru03	warning state				1	1		х	х	✓
2C04h	0	V	UINT8	ru04	supply unit state				1	1		Х	х	✓
2C05h	0	V	INT32	ru05	set value display				1	8192	rpm	Х	х	√
2C06h	0	V	INT32	ru06	ramp out display				1	8192	rpm	Х	х	✓
2C07h	0	V	INT32	ru07	act. frequency				1	8192	Hz	х	х	√
2C08h	0	V	INT32	ru08	act. value				1	8192	rpm	х	х	✓
2C09h	0	V	INT32	ru09	act. encoder speed				1	8192	rpm	х	x	9300, 9301, 9302, 9303, 9305, 9307
2C0Ah	0	V	INT32	ru10	act. apparent current				1	100	Α	Х	х	✓
2C0Bh	0	V	INT32	ru11	act. active current				1	100	Α	х	х	✓
2C0Ch	0	٧	INT32	ru12	act. reactive current				1	100	Α	Х	х	✓
2C0Dh	0	V	INT32	ru13	peak apparent current	110000	-110000	0	1	100	Α	х		√
2C0Eh	0	V	UINT16	ru14	act. Uic voltage				1	10	V	х	х	✓
2C0Fh	0	V	UINT16	ru15	peak Uic voltage	65535	0	0	1	10	V	х		√
2C10h	0	V	UINT16	ru16	act. output voltage				1	10	V	Х	х	√
2C11h	0	V	UINT16	ru17	modulation grade				100	16384	%	Х	х	✓
2C12h	0	V	UINT16	ru18	dig. input state				1	1		Х	х	✓
2C13h	0	V	UINT16	ru19	internal output state				1	1		х	х	✓
2C14h	0	V	UINT16	ru20	dig. output state				1	1		Х	х	✓
2C15h	0	V	UINT16	ru21	dig. output flags				1	1		Х	х	✓
2C17h	0	V	INT16	ru23	reference torque				1	10	%	х	х	√
2C18h	0	V	INT16	ru24	actual torque				1	10	%	х	х	√
2C19h	0	ST	UINT8	ru25	heatsink temperature values				1	1		Х	х	

ru: run p	aramet	er												
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	1		INT16		heatsink temperature 1				1	10	°C	х	х	
	2		INT16		heatsink temperature 2				1	10	°C	Х	х	,
	3		INT16		heatsink temperature 3				1	10	°C	Х	Х	√
	4		INT16		minimal distance to OH				1	10	°C	Х	Х	
	0		UINT8		internal temperature values				1	1		Х	Х	
	1		INT16		internal temperature PU 1				1	10	°C	Х	Х	
2C1Ah	2	ST	INT16	ru26	internal temperature PU 2				1	10	°C	Х	Х	,
2CTAII	3	31	INT16	1u26	internal temperature PU 3				1	10	°C	Х	Х	√
	4		INT16		minimal distance to OHI				1	10	°C	Х	х	
	5		INT16		internal temperature CB				1	10	°C	Х	Х	
2C1Bh	0	٧	UINT16	ru27	OL2 counter				1	10	%	х	х	✓
2C1Ch	0	V	INT16	ru28	motor temperature				1	10	°C	Х	х	✓
2C1Dh	0	V	UINT16	ru29	OL counter				1	10	%	х	х	✓
2C1Eh	0	V	UINT32	ru30	internal communication state				1	1		х	х	√
2C20h	0	V	UINT16	ru32	motor prot. counter				1	10	%	Х	х	✓
2C21h	0	V	INT32	ru33	position actual value				1	1		x	х	9300, 9301, 9302, 9303, 9305, 9307
2C22h	0	V	INT16	ru34	act. torque lim. mot for				1	10	%	Х	х	✓
2C23h	0	V	INT16	ru35	act. torque lim. mot rev				1	10	%	Х	х	✓
2C24h	0	V	INT16	ru36	act. torque lim. gen for				1	10	%	х	х	√
2C25h	0	V	INT16	ru37	act. torque lim. gen rev				1	10	%	Х	х	✓
	0		UINT8		position value before gear factor				1	1		х	х	9300,
	1		UINT32		gearless position value				1	1		Х	х	9301,
2C26h	2	ST	UINT16	ru38	gearless revolutions				1	1		Х	х	9302,
	3		UINT16		gearless position low				1	1		х	х	9303, 9305, 9307
2C29h	0	V	UINT16	ru41	dig. input terminal state				1	1		х	х	√

ru: run p	aramet	er												
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2C2Ah	0	V	INT16	ru42	AN1 value display				100	4096	%	х	х	✓
2C2Bh	0	V	INT16	ru43	AN1 after gain display				100	4096	%	Х	х	✓
2C2Ch	0	V	INT16	ru44	AN2 value display				100	4096	%	х	х	✓
2C2Dh	0	V	INT16	ru45	AN2 after gain display				100	4096	%	х	х	✓
2C2Eh	0	٧	INT16	ru46	AN3 value display				100	4096	%	х	х	9302, 9303, 9305, 9306, 9307, 9308
2C2Fh	0	V	INT16	ru47	AN3 after gain display				100	4096	%	х	х	9302, 9303
2C30h	0	V	INT16	ru48	analog REF display				100	4096	%	х	х	✓
2C31h	0	V	INT16	ru49	analog AUX display				100	4096	%	х	х	✓
2C32h	0	V	INT16	ru50	act. torque lim. pos.				1	10	%	х	х	✓
2C33h	0	V	INT16	ru51	act. torque lim. neg.				1	10	%	х	х	✓
2C34h	0	V	UINT32	ru52	system date	4294967295	0	0	1	1	*1	х		✓
2C35h	0	V	UINT32	ru53	system time	4294967295	0	0	1	1	*1	х		✓
2C36h	0	V	INT16	ru54	PID xd				100	4096	%	х	х	✓
2C37h	0	V	INT16	ru55	PID output value				100	4096	%	Х	х	✓
2C39h	0	V	UINT16	ru57	eff. motor load				1	10	%	х	х	✓
2C3Ah	0	V	UINT8	ru58	actual index				1	1		Х	х	✓
2C3Fh	0	V	UINT16	ru63	Uic voltage at Power On				1	10	V	Х	х	✓
2C48h	0	V	UINT16	ru72	act. switch. freq				1	100	kHz	х	х	✓
2C49h	0	V	INT16	ru73	Imot/ImaxOl2				1	10	%	Х	х	✓
2C4Ah	0	V	UINT16	ru74	unfiltered flags state				1	1		х	х	✓
2C4Bh	0	V	UINT32	ru75	global drive state				1	1		х	х	✓
2C4Ch	0	V	UINT32	ru76	drive state				1	1		Х	х	✓
2C4Eh	0	V	INT32	ru78	Analog Out display				100	32768	%	х	х	✓
2C50h	0	٧	UINT16	ru80	relative load				1	10	%	х	х	✓

ru: run p	aramet	er												
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2C51h	0	V	INT32	ru81	actual torque				1	1000	Nm	х	х	✓
	0		UINT8		actual power/energy				1	1		Х	Х	
	1		INT32		mechanical power				1	1000	kW	Х	Х	
	2		INT32		electrical output power				1	1000	kW	Х	Х	
2C52h	3	ST	INT32	ru82	electrical power loss				1	1000	kW	Х	Х	,
205211	4	31	UINT32	TuoZ	out. energy mot.	4294967295	0	0	1	10	kWh			✓
	5		UINT32		out. energy mot. volatile	4294967295	0	0	1	1000	kWh	Х		
	6		UINT32		out. energy gen.	4294967295	0	0	1	10	kWh		-	
	7		UINT32		out. energy gen. volatile	4294967295	0	0	1	1000	kWh	Х		
2C53h	0	Α	UINT8	ru83	diff. speed	4	4	4	1	1			Х	,
200311	14	А	INT32	Tuos	alli. speed				1	8192	rpm	Х	Х	✓
2C54h	0	V	INT32	ru84	ref value display				1	8192	rpm	Х	Х	✓
2C55h	0	V	INT32	ru85	actual speed PT1				1	8192	rpm	х	х	✓
2C56h	0	V	INT32	ru86	standard set speed				1	8192	rpm	х	х	✓
2C57h	0	٧	INT32	ru87	ramp out value				1	8192	rpm	х	х	✓
2C58h	0	V	UINT16	ru88	complete flags state				1	1		х	х	✓
0050	0	^	UINT8	00	Constitution	2	2	2	1	1			Х	
2C59h	12	Α	UINT32	ru89	timer value				1	1		х	Х	✓

ru: run p	aramet	er B												
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
4C09h	0	>	INT32	ru09	act. encoder speed B				1	8192	rpm	х	x	9300, 9301, 9302, 9303, 9305, 9307
4C21h	0	٧	INT32	ru33	position actual value B				1	1		x	х	9300, 9301, 9302, 9303, 9305, 9307
	0		UINT8		position value before gear factor B				1	1		х	х	9300, 9301,
4C26h	1	ST	UINT32	ru38	gearless position value B				1	1		Х	Х	9302,
	2	•	UINT16		gearless revolutions B				1	1		Х	Х	9303,
	3		UINT16		gearless position low B				1	1		х	х	9305, 9307

de: devid	ce info													
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2008h	0	V	UINT16	de08	device configuration ID				1	1			Х	✓
	0		UINT8		operator cfg data				1	1			Х	
	1		INT32		idx start object	2147483647	0	11265	1	1				
	2		UINT32		supported baud rates				1	1			Х	
	3		INT32		baud rate addr.				1	1			Х	9300.
200 4 h	4	ST	INT32	d= 40	sw version addr.				1	1			Х	9301,
200Ah	5	51	INT32	de10	sw date addr.				1	1			Х	9302,
	6		UINT32		supported services 31-0				1	1			Х	9303
	7		UINT32		supported services 63-32				1	1			Х	
	8		INT32		watchdog addr.				1	1			Х	
	9		UINT32		com mode	250000	0	0	1	1				
	0		UINT8		operator cfg data				1	1			Х	
	1		INT32		idx start object	2147483647	0	11265	1	1				
	2		UINT32		supported baud rates				1	1			Х	
	3		INT32		baud rate addr.				1	1			Х	
	4		INT32		sw version addr.				1	1			Х	
	5		INT32		sw date addr.				1	1			Х	
	6		UINT32		supported services 31-0				1	1			Х	
	7		UINT32		supported services 63-32				1	1			Х	
	8		INT32		watchdog addr.				1	1			Х	9305,
200Ah	9	ST	UINT32	de10	com mode	500000	0	0	1	1				9306, 9307,
	10		INT32		Node Id object				1	1			Х	9308
	11		INT32		MAC address object				1	1			Х	
	12		INT32		IP address object				1	1			Х	
	13		INT32		IP subnet mask object				1	1			Х	
	14		INT32		IP gateway address object				1	1			Х	
	15		INT32		IP scan name object				1	1			Х	
	16		INT32		EoE IP address object				1	1			Х	
	17		INT32		EoE IP subnet mask object				1	1			Х	
	18		INT32		EoE IP gateway address object				1	1			Х	
200Dh	0	٧	UINT32	de13	ctrl hw type				1	1			Х	9300,

de: devi	ce info													
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	ט
														9302, 9303, 9305, 9306, 9307,
														9308
200Fh	0	V	UINT32	de15	ctrl type				1	1			Х	✓
2010h	0	V	UINT32	de16	ctrl software version				1	1			х	✓
2011h	0	V	UINT32	de17	ctrl software date				1	1			х	✓
2012h	0	٧	UINT32	de18	fpga core version				1	1			х	9300, 9301, 9302, 9303
2013h	0	>	UINT32	de19	fpga core date				1	1			х	9300, 9301, 9302, 9303
2014h	0	٧	INT8	de20	M3 code state				1	1			х	9305, 9306, 9307, 9308
	0		UINT8		file system				1	1		Х	х	
	1		UINT32		max bytes				1	1		Х	х	
2015h	2	ST	UINT32	de21	used bytes				1	1		Х	х	✓
	3		UINT32		max files				1	1		Х	Х	
	4		UINT32		used files				1	1		Х	Х	
2018h	0	>	UINT32	de24	power software version				1	1			х	9302, 9303, 9305, 9306
2019h	0	V	UINT32	de25	power software date				1	1			х	9302, 9303, 9305, 9306
201Ah	0	V	INT32	de26	saved inverter data ID				1	1			х	✓

de: devid	ce info													
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
201Bh	0	٧	INT32	de27	inverter data ID	2147483647	-1	-1	1	1				✓
201Ch	0	V	UINT32	de28	inverter rated current				1	100	Α		х	✓
201Dh	0	V	UINT32	de29	inverter maximum current				1	100	Α		х	✓
201Eh	0	V	UINT16	de30	inverter rated voltage				1	10	V		х	✓
201Fh	0	V	UINT16	de31	inverter maximum DC voltage				1	10	V		х	✓
2020h	0	V	UINT16	de32	inverter minimum DC voltage				1	10	V		х	✓
2021h	0	٧	UINT16	de33	inverter rated switching frequency				1	100	kHz		х	✓
2022h	0	>	UINT16	de34	inverter maximum switching frequency				1	100	kHz		х	√
2023h	0	>	UINT16	de35	inverter intermed.circuit capacity [uF]				1	1			х	✓
2024h	0	V	UINT16	de36	braking transistor default level				1	10	V		х	✓
2025h	0	V	INT32	de37	saved safety serial number				1	1			x	9301, 9303, 9305, 9306, 9307, 9308
2027h	0	V	INT32	de39	saved safety type				1	1			х	9301, 9303, 9305, 9306, 9307, 9308
2029h	0	V	INT32	de41	safety type				1	1			х	9300, 9302
202Ah	0	V	UINT32	de42	safety software version				1	1			х	9301, 9303, 9305, 9306, 9307, 9308
202Bh	0	V	UINT32	de43	safety software date				1	1			х	9301, 9303,

de: devi	e info													
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
														9305, 9306, 9307, 9308
202Ch	0	>	UINT32	de44	KTY software version				1	1	1		Х	>
202Dh	0	V	UINT32	de45	KTY software date				1	1			Х	✓
2030h	0	٧	UINT32	de48	m3 software version	2147483647	0	0	1	1				9305, 9306, 9307, 9308
2031h	0	V	UINT32	de49	m3 software date	2147483647	0	0	1	1				9305, 9306, 9307, 9308
2032h	0	٧	UINT32	de50	fieldbus stack version				1	1			х	9301, 9303
2033h	0	>	UINT32	de51	fieldbus stack date				1	1			х	9301, 9303
2034h	0	<	UINT32	de52	enc interf software version				1	1			х	9303, 9305, 9307
2035h	0	٧	UINT32	de53	enc interf software date				1	1			х	9303, 9305, 9307
	0		UINT8		additional inverter data				1	1			Х	
	1		UINT32		current scale value				1	10000	Α		Х	
	2		UINT8		power unit data format				1	1			Х	
2050h	3	ST	UINT32	de80	GTR7 availability	50000000	0	0	1	1				✓
	4		UINT32		ChecksumLong				1	1			Х	
	5		UINT16		analog PU ID				1	1			Х	
	6		UINT8		pu data check status				1	1			Х	
206Bh	0	V	UINT8	de107	get MD5 hash	1	0	0	1	1				✓
206Ch	0	Α	UINT8	de108	MD5 hash	4	4	4	1	1	-		Х	\
200011	14	, ,	UINT32	40100					1	1		х	Х	٧

de: devid	ce info													
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
206Dh	0	٧	UINT32	de109	exclusions from MD5	7	0	0	1	1		х		✓
2073h	0	٧	UINT32	de115	global drive status mask	4294967295	0	-1	1	1				✓
2074h	0	>	INT16	de116	cooling fan HS level	900	-1	0	1	10	°C	х		9300, 9301
2075h	0	٧	INT16	de117	cooling fan ID level	900	-1	0	1	10	°C	х		9300, 9301
2078h	0	V	UINT32	de120	max output frequency				1	1	Hz	х	х	✓

st: statu	s info													
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2100h	0	V	UINT16	st00	(CiA 0x6041) statusword				1	1		Х	х	✓
2101h	0	V	UINT16	st01	(CiA 0x603F) error code				1	1		Х	х	✓
2102h	0	٧	INT8	st02	(CiA 0x6061) modes of operation display				1	1		х	х	✓
2103h	0	V	INT32	st03	(CiA 0x6043) vl velocity demand				1	1	rpm	х	х	✓
2104h	0	V	UINT16	st04	brake ctrl status				1	1		х	х	✓
210Ch	0	V	UINT16	st12	state machine display				1	1		х	х	✓
210Dh	0	V	UINT16	st13	state and error display				1	1		Х	х	✓
210Eh	0	V	UINT16	st14	active controlword				1	1		х	х	✓
210Fh	0	V	UINT16	st15	combined controlword				1	1		Х	х	✓
2120h	0	٧	INT32	st32	(CiA 0x606C) velocity actual value				1	1		х	х	✓
2121h	0	٧	INT32	st33	(CiA 0x6064) position actual value				1	1		х	х	✓
2122h	0	٧	INT16	st34	(CiA 0x6077) torque actual value				1	1		х	х	✓
2123h	0	V	UINT32	st35	system counter				1	1		х	х	✓
2124h	0	٧	INT32	st36	(CiA 0x60F4) following error actual value				1	1		х	х	✓
2125h	0	٧	INT32	st37	(CiA 0x6062) position demand value				1	1		х	х	√
2130h	0	V	INT16	st48	rho actual value				1	1		х	х	✓

dr: drive	param	eter												
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2200h	0	V	UINT8	dr00	motor type	4	0	0	1	1				✓
2201h	0	Α	UINT8	dr01	motor port number	11	11	11	1	1			Х	,
220111	111	A	UINT8	ulul	motor part number	255	0	0	1	1				✓
2202h	0	V	UINT8	dr02	motordata state				1	1			х	✓
2203h	0	V	UINT32	dr03	rated current	110000	1	300	1	100	Α			✓
2204h	0	V	UINT32	dr04	rated speed	8192000	1	90880	1	64	rpm			✓
2205h	0	V	UINT16	dr05	rated voltage	830	10	400	1	1	V			✓
2206h	0	V	UINT32	dr06	rated frequency	3200000	1	50000	1	1000	Hz			√
2207h	0	V	UINT8	dr07	ASM rated cos(phi)	100	1	86	1	100				√
2208h	0	V	UINT16	dr08	magnetising current %	1000	0	0	1	10	%			√
2209h	0	V	UINT32	dr09	rated torque	128000000	0	5000	1	1000	Nm			√
220Bh	0	V	UINT16	dr11	max. torque %	60000	0	3000	1	10	%			√
220Ch	0	V	UINT16	dr12	max. current %	60000	10	3000	1	10	%			√
220Dh	0	V	UINT16	dr13	breakdown torque %	60000	0	1500	1	10	%			√
220Eh	0	V	UINT32	dr14	SM EMF [Vpk/(1000min-1)]	60000000	0	110000	1	1000				√
220Fh	0	V	UINT32	dr15	SM inductance q-axis UV	6000000	1	100000	1	1000	mH			√
2210h	0	V	UINT16	dr16	SM inductance d-axis %	10000	1	1000	1	10	%			√
2211h	0	V	UINT32	dr17	stator resistance UV	2500000	1	30000	1	10000	Ω			√
2212h	0	V	UINT16	dr18	ASM rotor resist. UV %	6000	1	1000	1	10	%			√
2213h	0	V	UINT32	dr19	ASM head inductance UV	6000000	1	64000	1	1000	mH			√
2215h	0	V	UINT32	dr21	ASM sigma stator ind. UV	6000000	1	3200	1	1000	mH			√
2216h	0	V	UINT16	dr22	ASM sigma rotor ind. %	10000	1	1000	1	10	%			√
2219h	0	V	UINT16	dr25	breakdown speed %	10000	1	1000	1	10	%			√
221Ch	0	V	UINT16	dr28	Uic reference voltage	830	10	565	1	1	V			√
221Dh	0	V	UINT16	dr29	max. id current fct. [lmax]	1000	0	1000	1	1000				√
	0		UINT8		user drive temp. sensor def.				1	1			Х	
224Eb	1	ST	INT16	4.20	temp value 1	999	-999	0	1	1	°C			
221Eh	2	51	INT16	dr30	temp value 2	999	-999	0	1	1	°C			✓
	3		INT16		temp value 3	999	-999	0	1	1	°C			

Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EO D
	4		INT16		temp value 4	999	-999	0	1	1	°C			
	5		INT16		temp value 5	999	-999	0	1	1	°C			
	6		INT16		temp value 6	999	-999	0	1	1	°C			
	7		INT16		temp value 7	999	-999	0	1	1	°C			
	8		INT16		temp value 8	999	-999	0	1	1	°C			
	9		INT16		temp value 9	999	-999	0	1	1	°C			
	10		INT16		temp value 10	999	-999	0	1	1	°C			
	11		INT16		temp value 11	999	-999	0	1	1	°C			
	12		INT16		temp value 12	999	-999	0	1	1	°C			
	13		INT16		temp value 13	999	-999	0	1	1	°C			
	14		INT16		temp value 14	999	-999	0	1	1	°C			
	15		INT16		temp value 15	999	-999	0	1	1	°C			
	16		INT16		temp value 16	999	-999	0	1	1	°C			
	17		INT16		temp value 17	999	-999	0	1	1	°C			
	18		INT16		temp value 18	999	-999	0	1	1	°C			
	19		INT16		temp value 19	999	-999	0	1	1	°C			
	20		INT16		temp value 20	999	-999	0	1	1	°C			
	21		INT16		temp value 21	999	-999	0	1	1	°C			
	22		INT16		temp value 22	999	-999	0	1	1	°C			
	23		INT16		temp value 23	999	-999	0	1	1	°C			
	24		INT16		temp value 24	999	-999	0	1	1	°C			
	25		INT16		temp value 25	999	-999	0	1	1	°C			
	26		INT16		temp value 26	999	-999	0	1	1	°C			
	27		INT16		temp value 27	999	-999	0	1	1	°C			
	28		INT16		temp value 28	999	-999	0	1	1	°C			
	29		INT16		temp value 29	999	-999	0	1	1	°C			
	30		INT16		temp value 30	999	-999	0	1	1	°C			
	31		INT16		temp value 31	999	-999	0	1	1	°C			
	32		INT16		temp value 32	999	-999	0	1	1	°C			
	33		INT16		R min	32767	0	0	1	1	Ω			
	34		INT16		R max	32767	0	1800	1	1	Ω			
	35		INT16		short circuit level	32767	0	100	1	1	Ω			

dr: drive	parame	eter												
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	36		INT16		no connection level	32767	0	1700	1	1	Ω			
	37		INT16		act. calc. resistance (R)				1	1	Ω		Х	
	38		INT16		Rv				1	1	Ω		Х	
2220h	0	V	UINT32	dr32	inertia motor (kg*cm^2)	2000000000	0	200	1	100				✓
2221h	0	V	UINT8	dr33	motor temp sensor type	5	0	0	1	1				✓
2222h	0	V	UINT16	dr34	motorprotection curr. %	10000	1	1000	1	10	%			✓
2223h	0	V	UINT8	dr35	SM prot. time min. Is/Id	255	1	2	1	10	S			✓
2224h	0	V	UINT8	dr36	SM prot. time Imax	255	1	2	1	10	S			✓
2225h	0	V	UINT16	dr37	SM prot. recovery time	6000	1	5	1	10	S			✓
2226h	0	V	UINT16	dr38	SM prot. min. Is/Id	5000	1	1500	1	10	%			✓
2227h	0	V	UINT8	dr39	ASM prot. mode	1	0	0	1	1				✓
222Ch	0	V	UINT16	dr44	speed (Lh/EMF ident.) %	10000	0	650	1	10	%			✓
222Dh	0	V	UINT16	dr45	ASM u/f boost	16384	0	328	100	16384	%			√
222Eh	0	V	UINT16	dr46	ASM v/f V1	16384	0	0	100	16384	%			✓
222Fh	0	V	UINT32	dr47	ASM v/f F1	3200000	0	0	1	1000	Hz			✓
2230h	0	V	UINT8	dr48	v/f characteristic mode	1	0	0	1	1	Hz			✓
2231h	0	V	UINT32	dr49	sinus filter ind. UV	6000000	0	1	1	1000	mH			✓
2233h	0	V	UINT32	dr51	sinus filter resistance UV	2500000	0	1	1	10000	Ω			✓
2234h	0	V	UINT16	dr52	sinus filter cap. UV [uF]	65535	0	0	1	10				✓
2235h	0	V	UINT16	dr53	sinus filt. min. switch. freq.	65535	0	0	1	100	kHz			✓
2236h	0	V	UINT16	dr54	ident	47	0	0	1	1				✓
2237h	0	V	UINT16	dr55	ident state				1	1		Х	Х	✓
2238h	0	٧	UINT16	dr56	ident Ls/sigma curr. (ampl. mod.)	10000	1	1000	1	10	%			✓
2239h	0	V	UINT16	dr57	ident error info				1	1		х	х	√
2240h	0	V	UINT16	dr64	bp filter critical freq. calc.				1	10	kHz		х	✓
2241h	0	V	UINT16	dr65	bp filter frequency set	65535	0	0	1	10	kHz			√
2242h	0	V	UINT16	dr66	bp filter q-factor	10	0	5	1	10				✓
2263h	0	V	UINT8	dr99	motordata control	2	0	0	1	1				√

vl: veloc	ity mod	le												
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2304h	0	V	UINT32	vl04	vl velocity min amount for	128000	0	0	1	1	rpm			✓
2305h	0	V	UINT32	vI05	vl velocity max amount for	128000	0	2000	1	1	rpm			✓
2306h	0	V	UINT32	vI06	vl velocity min amount rev	128000	0	0	1	1	rpm			✓
2307h	0	V	UINT32	vI07	vl velocity max amount rev	128000	0	2000	1	1	rpm			✓
2314h	0	V	INT32	vl20	(CiA 0x6064) vI target velocity	128000	-128000	0	1	1	rpm	х		✓
2315h	0	V	INT32	vl21	target velocity high res	1048576000	-1048576000	0	1	8192	rpm	х		✓
2316h	0	V	INT32	vl22	external target velocity				1	8192	rpm	х	х	✓
2329h	0	V	INT32	vl41	vl velocity actual limit for				1	1	rpm	Х	х	✓
232Ah	0	V	INT32	vl42	vl velocity actual limit rev				1	1	rpm	х	х	✓

Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2400h	0	V	UINT32	ds00	KP current q-axis [V/A]	2147483647	0	1	1	10000				✓
2401h	0	٧	UINT32	ds01	Tn current q-axis	2147483647	0	1	1	1000	ms			✓
2402h	0	V	UINT32	ds02	KP current d-axis [V/A]	2147483647	0	1	1	10000				✓
2403h	0	V	UINT32	ds03	Tn current d-axis	2147483647	0	1	1	1000	ms			✓
2404h	0	V	UINT16	ds04	current mode	16383	0	9265	1	1				✓
2405h	0	V	UINT16	ds05	omega mech. precontrol time	60000	0	2000	1	1000	ms			√
2406h	0	V	UINT16	ds06	omega decoupling time	60000	0	0	1	1000	ms			✓
2407h	0	V	UINT16	ds07	observer factor	600	0	50	1	10	%			√
2408h	0	V	UINT16	ds08	deviation control time	60000	0	2000	1	1000	ms			√
2409h	0	V	UINT8	ds09	bp filter coeff. index	8	0	0	1	1		х		√
240Ah	0	V	INT32	ds10	bp filter coeff. value	131068	-131068	131068	1	1		х		√
240Bh	0	V	UINT16	ds11	torque mode	63	0	1	1	1				√
240Ch	0	V	UINT16	ds12	adaption mode	63	0	0	1	1				√
240Dh	0	V	UINT16	ds13	torquelimit curve factor	16000	1	1000	1	10	%			√
240Eh	0	V	UINT16	ds14	current ctrl. factor	8000	1	1000	1	10	%	х		√
240Fh	0	V	UINT16	ds15	dyn dec curr. ctrl. factor	1000	1	100	1	10	%			√
2410h	0	V	UINT16	ds16	anti windup speed level	3999	0	0	1	10	%			√
04445	0	^	UINT8	-1-47	ha Chanasa M	9	9	9	1	1			Х	,
2411h	19	Α	INT32	ds17	bp filter coeff.	131068	-131068	131068	1	1		х		√
	0		UINT8		Rs model stabilisation				1	1			Х	
	1		UINT16		Rs model stabilisation mode	3	0	0	1	1				
2412h	2	ST	UINT16	ds18	Rs adaption high limit	2000	0	1400	1	10	%			✓
	3		UINT16		Rs adaption low limit	2000	0	800	1	10	%			
	4		UINT16		Rs adaption factor	2000	0	800	1	10	%			
241Bh	0	٧	UINT16	ds27	(A)SCL time speed calc.	65535	0	250	1	1000	ms			✓
241Ch	0	V	UINT16	ds28	(A)SCL filter speed calc.	65535	0	2000	1	1000	ms			✓
241Eh	0	V	UINT16	ds30	SCL model mode	15	0	3	1	1				✓
241Fh	0	V	UINT8	ds31	SynRM nest optimisation fct.	100	19	25	1	10				✓
2420h	0	V	UINT16	ds32	SCL stab.term speed	3999	0	200	1	10	%			✓

ds: drive	specif	contro	ol para.											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2421h	0	٧	UINT32	ds33	SCL stab.term time	2147483647	0	1000	1	1000	ms			✓
2422h	0	V	UINT16	ds34	stab term max. torque	8000	0	0	1	10	%			✓
2423h	0	V	INT16	ds35	scl stabilisation current	8000	-8000	500	1	10	%			√
2424h	0	V	UINT16	ds36	min speed for stab.curr.	3999	0	50	1	10	%			√
2425h	0	V	UINT16	ds37	max speed for stab.curr.	3999	0	100	1	10	%			√
2426h	0	V	UINT16	ds38	SCL standstill current	8000	0	1000	1	10	%			√
2429h	0	V	UINT16	ds41	model ctrl	1023	0	8	1	1				√
242Ah	0	V	UINT16	ds42	model ctrl. ref. speed time	60000	0	200	1	1	ms			√
242Bh	0	V	UINT16	ds43	model ctrl. act. speed time	60000	0	200	1	1	ms			√
242Eh	0	V	UINT16	ds46	model ctrl. act. speed level	60000	0	1000	1	10	%			√
242Fh	0	V	UINT16	ds47	model ctrl. act. speed hyst.	3999	0	200	1	10	%			√
2430h	0	V	UINT32	ds48	model ctrl min. acc/dec [s-2]	1747626666	0	10000	1	100				√
2437h	0	V	INT16	ds55	Isd offset	8000	-8000	0	1	10	%			√
	0		UINT8		protection function				1	1			Х	
	1		UINT16		u/f current limit ctrl mode	7	0	0	1	1				i
	2		UINT16		ramp stopping mode	31	0	0	1	1				
0.4001	3	ОТ.	UINT16	d- 00	LD-U stop voltage level	15000	0	7800	1	10	V			,
243Ch	4	ST	UINT32	ds60	LAD-I KI [1/As]	2147483647	0	10000	1	1000				√
	5		UINT32		LAD-I KDI [1/As]	2147483647	0	10000	1	1000				
	6		UINT32		LD-U KI [1/Vs]	2147483647	0	10000	1	1000				
	7		UINT32		LD-U KDI [1/Vs]	2147483647	0	10000	1	1000				
243Dh	0	V	UINT16	ds61	DC braking source	65535	0	0	1	1		Х		✓
	0		UINT8		DC braking				1	1			Х	
	1		UINT32		braking mode	5265	0	0	1	1				
	2		UINT16		timing mode	31	0	0	1	1				
0.40=1	3		UINT16		modulation off time				1	100	S		Х	
243Eh	4	ST	UINT16	ds62	max. DC current[%In]	10000	0	1000	1	10	%			√
	5		UINT16		DC boost [%Un]	16384	0	4096	100	16384	%			
	6		UINT16		braking time	60000	0	100	1	100	S			
	7		UINT16		braking speed level [%Nn]	1000	0	20	1	10	%			

ds: drive	specif	contro	ol para.											
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	8		UINT8		braking state	5	0	0	1	1		Х		
	0		UINT8		ASiCL ctrl. mode				1	1			Х	·
	1		UINT16		ASiCL curr. ctrl lsqPt1	60000	0	2	1	1	ms			1
	2		UINT16		ASiCL slip calculation IsqPt1	60000	0	200	1	1	ms			1
	3		UINT16		ASiCL curr.ctrl. delay at zero	60000	0	200	1	1	ms			1
243Fh	4	ST	UINT16	ds63	ASiCL Rs model stabilisation mode	3	0	1	1	1				✓
	5		UINT16		ASiCL Rs adaption high limit	2000	0	1200	1	10	%			1
	6		UINT16		ASiCL Rs adaption low limit	2000	0	800	1	10	%			l
	7		UINT16		ASiCL Rs adaption factor	2000	0	800	1	10	%			l

co: cont	rol													
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2500h	0	V	UINT16	co00	(CiA 0x6040) controlword	65535	0	0	1	1		х		✓
2501h	0	V	INT8	co01	(CiA 0x6060) modes of operation	10	-2	2	1	1		х		√
2502h	0	V	UINT8	co02	velocity shift factor	13	0	10	1	1				✓
2503h	0	V	UINT16	co03	position rot.scale (bit)	30	2	16	1	1		х		✓
2504h	0	V	UINT8	co04	position source	2	0	0	1	1		х		✓
2505h	0	V	UINT8	co05	speed control source	1	0	0	1	1				✓
2506h	0	V	UINT8	co06	system inversion	2	0	0	1	1		х		✓
2507h	0	V	UINT8	co07	non volatile memory state	1	0	0	1	1				✓
2508h	0	V	UINT8	co08	reset options	3	0	0	1	1				✓
2509h	0	V	UINT16	co09	reset ctrl	1	0	0	1	1				✓
250Ah	0	V	UINT8	co10	position interpolator	31	0	4	1	1				✓
250Bh	0	V	UINT8	co11	velocity interpolator	31	0	4	1	1				✓
250Ch	0	V	UINT8	co12	torque interpolator	31	0	0	1	1				✓
250Dh	0	V	UINT32	co13	pos. pre control	150000	0	0	1	1	μs	х		✓
250Fh	0	V	INT16	co15	(CiA 0x6071) target torque	32767	-32767	0	1	1		х		✓
2510h	0	V	INT32	co16	(CiA 0x60FF) target velocity	2147483647	-2147483647	0	1	1		х		✓
2511h	0	V	INT32	co17	(CiA 0x60B1) velocity offset	2147483647	-2147483647	0	1	1		х		✓
2512h	0	V	INT16	co18	(CiA 0x60B2) torque offset	32767	-32767	0	1	1		х		✓
2513h	0	V	INT32	co19	(CiA 0x607A) target position	2147483647	-2147483648	0	1	1		х		✓
2514h	0	V	UINT32	co20	internal pretorque fact	655360	0	65536	25	16384	%	х		✓
2515h	0	V	UINT16	co21	brake ctrl mode	1023	0	16	1	1				✓
2516h	0	V	UINT16	co22	brake ctrl open delay	10000	0	0	1	1	ms			✓
2517h	0	V	UINT16	co23	brake ctrl open time	10000	0	0	1	1	ms			√
2518h	0	V	UINT16	co24	brake ctrl closing delay	10000	0	0	1	1	ms			✓
2519h	0	V	UINT16	co25	brake ctrl closing time	10000	0	0	1	1	ms			√
	0		UINT8		brake ctrl				1	1	-		х	
251Ah	1	ST	INT32	co26	start speed	128000	-128000	0	1	1	rpm	х		✓
	2		INT32		stop speed	128000	-128000	0	1	1	rpm	Х		

co: conti	rol													
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	3		INT16		pre torque setting	32767	-32767	0	1	1		Х		
	4		UINT32		speed ctrl (KI) adaption	100000	0	1000	1	10	%	Х		
	5		UINT16		fadeout reducing time	10000	0	0	1	1	ms			
	6		UINT16		fadeout zero time	10000	0	0	1	1	ms			
251Ch	0	Α	UINT8	co28	combined controlword mask	3	3	3	1	1			Х	√
201011	13		UINT16	0020	Combined Controlword Mask	65535	0	0	1	1				, v
251Dh	0	Α	UINT8	co29	source connect type	3	3	3	1	1			Х	√
201011	13	, ,	UINT32	0020	Source connect type	4194304	0	0	1	1				L v
251Eh	0	V	UINT16	co30	controlword mask	65535	0	65535	1	1				✓
251Fh	0	V	UINT16	co31	controlword internal	65535	0	0	1	1				✓
2520h	0	V	UINT16	co32	state machine properties	16383	0	78	1	1				✓
2521h	0	V	UINT16	co33	ctrlword mirror bit	65535	0	0	1	1				✓
2522h	0	V	UINT16	co34	statusword mirror bit	65535	0	0	1	1				✓
2524h	0	V	UINT8	co36	inertia reducing mode	23	0	0	1	1		х		✓
05051	0	^	UINT8	07	to authorize door a fact	64	64	64	1	1			Х	,
2525h	164	Α	UINT8	co37	inertia reduce fact	255	0	0	1	1				√
2526h	0	Α	UINT8	co38	inertia derivation fact	64	64	64	1	1			Х	,
232011	164	А	INT8	0036	mertia derivation fact	127	-127	0	1	1				√
2527h	0	V	INT32	co39	inertia derivation [kg*cm^2]	2147483647	0	0	1	100		х		✓
2528h	0	Α	UINT8	co40	weight comp fact	64	64	64	1	1			Х	√
232011	164	^	INT8	0040	weight compliant	127	-127	0	1	1				V
2529h	0	V	INT16	co41	weight comp torque	32767	0	0	1	1		х		✓
252Ah	0	V	INT32	co42	speed angle offset	57266231	-57266231	0	1	572662	ms	х		✓
252Bh	0	Α	UINT8	co43	speed ctrl reduce fact	64	64	64	1	1			Х	,
202011	164	А	UINT8	0043	speed cliffeduce fact	255	0	0	1	1				√
2530h	0	V	INT32	co48	acceleration for [s-2]	1747626666	1	2000	1	100		х		✓
2531h	0	V	INT32	co49	deceleration for [s-2]	1747626666	1	2000	1	100		х		✓
2532h	0	V	INT32	co50	acceleration rev [s-2]	1747626666	1	2000	1	100		х		✓
2533h	0	V	INT32	co51	deceleration rev [s-2]	1747626666	1	2000	1	100		х		√
2534h	0	V	INT32	co52	for acc jerk Is [s-3]	104857600	50	10000	1	100		х		√

co: cont	rol													
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2535h	0	٧	INT32	co53	for acc jerk hs [s-3]	104857600	50	10000	1	100		х		✓
2536h	0	٧	INT32	co54	for dec jerk hs [s-3]	104857600	50	10000	1	100		х		✓
2537h	0	V	INT32	co55	for dec jerk Is [s-3]	104857600	50	10000	1	100		х		✓
2538h	0	٧	INT32	co56	rev acc jerk ls [s-3]	104857600	50	10000	1	100		х		✓
2539h	0	V	INT32	co57	rev acc jerk hs [s-3]	104857600	50	10000	1	100		х		✓
253Ah	0	V	INT32	co58	rev dec jerk hs [s-3]	104857600	50	10000	1	100		х		✓
253Bh	0	V	INT32	co59	rev dec jerk ls [s-3]	104857600	50	10000	1	100		х		✓
253Ch	0	V	UINT8	co60	ramp mode	255	0	1	1	1		х		✓
253Dh	0	٧	UINT16	co61	torque lim mode	8191	0	0	1	1		х		✓
253Eh	0	V	INT16	co62	selectable stop mode torque	10000	0	1000	1	10	%	х		✓
253Fh	0	V	INT16	co63	dM/dt Limit [Mn%/ms]	10000	0	0	1	100	%	х		✓
2552h	0	٧	UINT32	co82	ext. modules ctrl word	1	0	1	1	1				9301, 9303
2553h	0	V	UINT8	co83	non volatile memory mode	1	0	0	1	1				✓
2554h	0	V	UINT8	co84	torque resolution	4	0	0	1	1				✓

ps: posit	ion cor	trol pa	ra.											
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2E00h	0	V	UINT16	ps00	position control mode	2	0	1	1	1		х		√
2E01h	0	V	UINT16	ps01	KP position controller	65000	0	100	1	10	rpm	х		✓
2E02h	0	V	UINT16	ps02	KP zero speed position ctrl	65000	0	0	1	10	rpm	х		✓
2E03h	0	٧	UINT16	ps03	KP speed limit reduction %	1000	0	0	1	10	%			✓
2E04h	0	٧	INT32	ps04	Speed limit for ps03	128000	0	3000	1	1	rpm	х		✓
2E0Ah	0	٧	UINT16	ps10	position ctrl limit %	10000	0	100	1	10	%			✓
2E0Ch	0	٧	UINT32	ps12	(CiA 0x6065) following error window	2147483647	0	5000	1	1				✓
2E0Dh	0	V	UINT16	ps13	(CiA 0x6066) following error time out	65535	0	0	1	1	ms	х	1	√
2E0Eh	0	٧	UINT32	ps14	(CiA 0x6067) positioning window	2147483647	0	5000	1	1				√
2E0Fh	0	V	UINT16	ps15	(CiA 0x6068) positioning window time	65535	0	0	1	1	ms	х		√
2E10h	0	V	INT32	ps16	(CiA 0x607D [2]) max software position limit	2147483647	-2147483648	2147483647	1	1		х		✓
2E11h	0	V	INT32	ps17	(CiA 0x607D [1]) min software position limit	2147483647	-2147483648	-2147483648	1	1		х		✓
2E12h	0	V	INT32	ps18	(CiA 0x607B [1]) min position range limit	2147483647	-2147483648	-2147483648	1	1		х		✓
2E13h	0	V	INT32	ps19	(CiA 0x607B [2]) max position range limit	2147483647	-2147483648	2147483647	1	1		х		✓
2E14h	0	٧	INT32	ps20	range ref window	2147483647	0	0	1	1		х		✓
2E15h	0	٧	UINT16	ps21	ref error count	-			1	1		х	х	√
2E16h	0	V	UINT16	ps22	posi setup state				1	1		Х	Х	✓
2E17h	0	٧	UINT16	ps23	position range periods	32767	0	0	1	1			-	✓
2E18h	0	V	UINT16	ps24	range correction	2048	0	0	1	1				√
2E1Eh	0	V	UINT32	ps30	(CiA 0x6081) profile velocity	128000	0	0	1	1	rpm	х		√
2E1Fh	0	V	UINT32	ps31	(CiA 0x6082) end velocity	128000	0	0	1	1	rpm	х		✓
2E20h	0	V	UINT32	ps32	(CiA 0x607F) max profile velocity	128000	0	1000	1	1	rpm	х		✓
2E21h	0	V	UINT8	ps33	absolute positioning	6	0	0	1	1		Х		✓
2E23h	0	V	INT32	ps35	feed forward speed num	1073741823	-1073741824	1000	1	1		х		✓

ps: posit	tion con	trol pa	ra.											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2E24h	0	V	INT32	ps36	feed forward speed denom	1073741823	1	1000	1	1		х		✓
2E26h	0	V	UINT8	ps38	positioning module	15	0	0	1	1		х		✓
2E27h	0	Α	UINT8	no20	index position	32	32	32	1	1			Х	√
202711	132	А	INT32	ps39	index position	2147483647	-2147483648	0	1	1		Х		V
2E28h	0	Α	UINT8	ps40	index speed	32	32	32	1	1			Х	
ZLZOII	132	^	INT32	рэто	писх эреси	128000	-128000	0	1	1	rpm	Х		
2E29h	0	Α	UINT8	ps41	index end speed	32	32	32	1	1			Х	
	132		INT32	ρσ	mack end opena	128000	-128000	0	1	1	rpm	Х		<u> </u>
2E2Ah	0	Α	UINT8	ps42	next index	32	32	32	1	1			Х	
	132		INT8			31	-1	-1	1	1		Х		
2E2Bh	0	Α	UINT8	ps43	index mode	32	32	32	1	1			Х	√
	132		UINT8			7	0	0	1	1		Х		<u> </u>
2E2Ch	0	V	UINT16	ps44	immediately input	16383	0	0	1	1		Х		✓
2E2Dh	0	V	INT8	ps45	immediately index	31	0	0	1	1		Х		✓
2E2Eh	0	V	INT8	ps46	start index	31	-1	-1	1	1		Х		✓
2E2Fh	0	V	INT8	ps47	active index				1	1		Х	Х	✓
2E30h	0	V	INT32	ps48	ps acceleration for [s-2]	1747626666	1	2000	1	100		Х		✓
2E31h	0	V	INT32	ps49	ps deceleration for [s-2]	1747626666	1	2000	1	100		х		✓
2E32h	0	٧	INT32	ps50	ps acceleration rev [s-2]	1747626666	1	2000	1	100		х		✓
2E33h	0	V	INT32	ps51	ps deceleration rev [s-2]	1747626666	1	2000	1	100		х		✓
2E34h	0	V	INT32	ps52	ps for acc jerk ls [s-3]	104857600	50	10000	1	100		Х		✓
2E35h	0	V	INT32	ps53	ps for acc jerk hs [s-3]	104857600	50	10000	1	100		х		√
2E36h	0	V	INT32	ps54	ps for dec jerk hs [s-3]	104857600	50	10000	1	100		Х		√
2E37h	0	V	INT32	ps55	ps for dec jerk ls [s-3]	104857600	50	10000	1	100		х		√
2E38h	0	V	INT32	ps56	ps rev acc jerk ls [s-3]	104857600	50	10000	1	100		Х		√
2E39h	0	V	INT32	ps57	ps rev acc jerk hs [s-3]	104857600	50	10000	1	100		Х		√
2E3Ah	0	V	INT32	ps58	ps rev dec jerk hs [s-3]	104857600	50	10000	1	100		х		√
2E3Bh	0	V	INT32	ps59	ps rev dec jerk ls [s-3]	104857600	50	10000	1	100		х		√
2E3Ch	0	V	UINT8	ps60	ps ramp mode	255	0	8	1	1		х		√ √

Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
00045	0	^	UINT8	d=04	flag anamand A	8	8	8	1	1			х	
2601h	18	Α	UINT16	do01	flag operand A	69	0	27	1	1		Х		✓
2602h	0	۸	UINT8	4003	flog operand P	8	8	8	1	1			Х	,
200211	18	Α	UINT16	do02	flag operand B	69	0	28	1	1		Х		√
2603h	0	Α	UINT8	4000	flag aparatar mada	8	8	8	1	1			х	,
200311	18	А	UINT16	do03	flag operator mode	255	0	5	1	1		Х		✓
2605h	0	Α	UINT8	do05	flog lovel 1	8	8	8	1	1			Х	,
200511	18	А	INT32	0005	flag level 1	2147483647	-2147483648	0	1	10000		Х		√
2606h	0	^	UINT8	4000	flog lovel 2	8	8	8	1	1			Х	,
2606N	18	Α	INT32	do06	flag level 2	2147483647	-2147483648	0	1	1		Х		✓
2607h	0	Α	UINT8	do07	flog byst sparand D	8	8	8	1	1			Х	,
2607N	18	А	INT32	do07	flag hyst. operand B	2147483647	0	0	1	10000		Х		✓
2608h	0	^	UINT8	do08	filter time floor	8	8	8	1	1			Х	,
2608N	18	Α	UINT32	0008	filter time flags	10000000	0	0	1	1000	ms	Х		✓
260Ah	0	V	UINT16	do10	dig. out ext. source	255	0	0	1	1		Х		✓
260Bh	0	V	UINT16	do11	dig. out logic	255	0	0	1	1				✓
260Ch	0	V	UINT32	do12	dig. output src. sel.	65535	0	0	1	1				√
	0		UINT8			4	4	4	1	1			Х	
260Dh	14	Α	UINT16	do13	select flag for connection	255	0	0	1	1		Х		√
00051	0		UINT8			4	4	4	1	1			Х	,
260Eh	14	Α	UINT16	do14	invert flags before connection	255	0	0	1	1		Х		√
260Fh	0	V	UINT8	do15	Number of flags	8	0	4	1	1		х		✓
2610h	0	V	UINT8	do16	number of connected flags	4	0	4	1	1		Х		√
2612h	0	٧	UINT16	do18	AND operation for connected flags	15	0	0	1	1				√
2613h	0	V	UINT16	do19	AND operation for output	255	0	0	1	1				√
2614h	0	V	UINT16	do20	select flag O1	4095	0	1	1	1		Х		√
2615h	0	V	UINT16	do21	select flag O2	4095	0	2	1	1		Х		√
2616h	0	V	UINT16	do22	select flag O3	4095	0	4	1	1		х		9300, 9302

Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA
muck	ldx	OAIT	1) 0	IDIX	Nume	оррег ших	LOWER IIIII	Delaun Value	man.	Div	O.m.	-		D
2617h	0	>	UINT16	do23	select flag O4	4095	0	8	1	1		х		9300 9302
2618h	0	٧	UINT16	do24	select flag OA	4095	0	1	1	1		х		✓
2619h	0	V	UINT16	do25	select flag OB	4095	0	2	1	1		Х		✓
261Ah	0	V	UINT16	do26	select flag OC	4095	0	4	1	1		х		✓
261Bh	0	V	UINT16	do27	select flag Relais	4095	0	0	1	1		Х		✓
20101	0		UINT8	1.00		8	8	8	1	1			х	,
261Ch	18	Α	UINT16	do28	invert flags output	4095	0	0	1	1		Х		√
261Eh	0	V	UINT16	do30	number of counter units	2	0	0	1	1		Х		✓
0045	0	^	UINT8	-1-04		2	2	2	1	1			х	,
261Fh	12	Α	UINT16	do31	counter unit mode	255	0	0	1	1		Х		√
2620h	0	Α	UINT8	4022	run course peremeter	2	2	2	1	1			х	,
202011	12	A	UINT8		run source parameter	3	0	0	1	1		Х		√
2621h	0	Α	UINT8	do33	run source bit	2	2	2	1	1			х	
202111	12	Α	UINT16	u033	Tuil Source bit	4095	0	0	1	1		Х		V
2622h	0	Α	UINT8	do34	reset source parameter	2	2	2	1	1			х	
202211	12		UINT8	4007	reset source parameter	3	0	0	1	1		Х		v
2623h	0	Α	UINT8	do35	reset source bit	2	2	2	1	1			Х	
202011	12		UINT16	4000	reset source bit	4095	0	0	1	1		Х		v
2624h	0	Α	UINT8	do36	count source parameter	2	2	2	1	1			Х	
202411	12		UINT8	4000	count source parameter	3	0	0	1	1		Х		v
2625h	0	Α	UINT8	do37	count source bit	2	2	2	1	1			Х	
202011	12	, ,	UINT16	4007	ocarit ocaroc bit	4095	0	0	1	1		Х		v
2626h	0	Α	UINT8	do38	direction source parameter	2	2	2	1	1			Х	
202011	12	, ,	UINT8	4000	direction source parameter	3	0	0	1	1		Х		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2627h	0	Α	UINT8	do39	direction source bit	2	2	2	1	1			Х	
	12	,,	UINT16	4000	3 33311 3341 33 51	4095	0	0	1	1		Х		Ľ
2628h	0	Α	UINT8	do40	timer end value	2	2	2	1	1			Х	
202011	12	,,	UINT32	40-10	annot ond value	8388607	1	8388607	1	1		х		*

fb: fieldb	ous para	ameter												
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2B0Ah	0	V	UINT16	fb10	sync interval	16000	0	0	1	1	μs			✓
2B0Bh	0	V	UINT16	fb11	set sync level	1000	0	10	1	10	μs			✓
2B0Ch	0	V	UINT16	fb12	KP sync PLL	256	0	32	1	1				✓
2B0Dh	0	V	UINT8	fb13	DIN66019 node id	238	1	1	1	1				9300, 9301, 9302, 9303
2B0Dh	0	>	UINT8	fb13	drive node ID	238	0	1	1	1				9305, 9306, 9307, 9308
2B0Eh	0	V	UINT8	fb14	DIN66019 baud rate	12	5	5	1	1				✓
	0		UINT8		node IDs				1	1			Х	9305,
2B0Fh	1	ST	UINT8	fb15	application node ID	255	0	2	1	1				9306, 9307,
	2		UINT8		debugger node ID	255	0	255	1	1				9308
2B10h	0	٧	UINT8	fb16	fieldbus node injection	255	1	1	1	1				9305, 9306, 9307, 9308
2B13h	0	V	UINT16	fb19	measured sync interval				4	5	μs	х	х	9300, 9302
2B13h	0	V	UINT16	fb19	measured sync interval				2	3	μs	х	х	9301, 9303
2B13h	0	٧	UINT16	fb19	measured sync interval				64	75	μs	х	х	9305, 9306, 9307, 9308
2B14h	0	V	UINT8	fb20	ETC invalid frame count P0				1	1			х	9300, 9302, 9305, 9306, 9307, 9308
2B15h	0	V	UINT8	fb21	ETC RX error count P0				1	1			Х	9300,

fb: fieldb	us para	ameter												
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
														9302,
														9305, 9306,
														9307,
														9308
														9300,
														9302,
2B16h	0	V	UINT8	fb22	ETC invalid frame count P1				1	1			х	9305,
														9306,
														9307, 9308
														9300,
														9302,
2B17h		V	UINT8	fb23	ETC RX error count P1				4	4				9305,
2B1/n	0	V	UINT8	1023	ETC RX error count PT				1	1			Х	9306,
														9307,
														9308
														9300,
														9302, 9305,
2B18h	0	V	UINT8	fb24	ETC for. RX error count P0				1	1			Х	9306,
														9307,
														9308
														9300,
														9302,
2B19h	0	V	UINT8	fb25	ETC for. RX error count P1				1	1			х	9305,
														9306, 9307,
														9307,
														9300,
														9302,
2B1Ah	0	V	UINT8	fb26	ETC processing unit error count				1	1			х	9305,
ZDIAN	0	v	UINTO	1020	L 10 processing unit error count				'	ı			X	9306,
														9307,
														9308
2B1Bh	0	V	INT16	fb27	ETC min. sync delay	32000	0	32000	8	25	μs			9300,
														9302,

fb: fieldb	_	ameter						T						
Index	Sub- Idx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
														9305,
														9306,
														9307, 9308
														9300,
														9302,
2B1Ch	0	V	INT16	fb28	ETC max. sync delay	32000	0	0	8	25				9305,
2BTCII	U	V	1111110	1026	ETC max. sync delay	32000	U	0	0	25	μs			9306,
														9307,
														9308
														9300, 9302,
														9302,
2B1Dh	0	V	UINT16	fb29	ETC no frame per sync cnt	32000	0	0	1	1				9306,
														9307,
														9308
														9300,
														9302,
2B1Eh	0	V	UINT16	fb30	ETC mult. frames per sync cnt	32000	0	0	1	1				9305, 9306,
														9306,
														9308
2B1Fh	0	V	UINT16	fb31	no PDO data per sync cnt	65535	0	0	1	1				√
2B20h	0	V	UINT8	fb32	LED 'DEV ST' blink status	1	0	0	1	1		х		✓
2B25h	0	V	INT16	fb37	ETC PD access min. sync delay	32000	0	32000	4	5	μs			9300,
											ļ			9302
														9305, 9306,
2B25h	0	V	INT16	fb37	ETC PD access min. sync delay	32000	0	32000	64	75	μs			9307,
														9308
2B26h	0	٧	INT16	fb38	ETC PD access max. sync de-	22000	0	0	4	5				9300,
ZDZ0[]	U	٧	סוואוו	1036	lay	32000	U	U	4	3	μs			9302
														9305,
2B26h	0	V	INT16	fb38	ETC PD access max. sync de-	32000	0	0	64	75	μs			9306,
					lay		-		-	-				9307, 9308
														9308

fb: fieldb	us para	ameter												
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2B3Ch	0	V	UINT8	fb60	process data size selection	4	0	0	1	1				✓
2B40h	0	V	UINT8	fb64	CAN node ID	127	1	1	1	1				✓
2B42h	0	V	UINT8	fb66	CAN baud rate	8	1	7	1	1				✓
2B43h	0	V	UINT16	fb67	fieldbus configuration				1	1			х	✓
2B44h	0	٧	UINT8	fb68	fieldbus selection	2	0	0	1	1				9300, 9302
2B44h	0	٧	UINT8	fb68	fieldbus selection	7	0	0	1	1				9301, 9303
2B44h	0	>	UINT8	fb68	fieldbus selection	1	0	0	1	1				9305, 9306, 9307, 9308
2B45h	0	٧	UINT16	fb69	CAN lost messages				1	1		х	х	9300, 9301, 9302, 9303
	0		UINT8		CAN options				1	1			х	
	1		UINT32		CAN option code	4294967295	0	0	1	1				
	2		UINT16		Tx PDO base ID	2044	1	1	1	1				9300,
2B46h	3	ST	UINT16	fb70	Rx PDO base ID	2044	1	1	1	1				9301,
204011	4	31	UINT16	1070	Tx PDO1 cycle time	10000	10	10	1	1				9302,
	5		UINT16		Tx PDO2 cycle time	10000	10	10	1	1				9303
	6		UINT16		Tx PDO3 cycle time	10000	10	10	1	1				
	7		UINT16		Tx PDO4 cycle time	10000	10	10	1	1				
2B47h	0	V	UINT32	fb71	fieldbus options	2	0	1	1	1				9305, 9306, 9307, 9308
2B48h	0	V	UINT32	fb72	change cnt				1	1		х	х	9305, 9306, 9307, 9308
2B5Ah	0	ST	UINT8	fb90	fieldbus state				1	1			Х	9300,

Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	1		UINT16		EtherCAT fieldbus state				1	1			х	9302
	2		UINT16		CANopen fieldbus state				1	1			Х	1
	3		UINT16		VARAN fieldbus state				1	1			х	
	0		UINT8		fieldbus state				1	1			Х	
	1		UINT16		EtherCAT fieldbus state				1	1			х	•
	2		UINT16		CANopen fieldbus state				1	1			х	
2B5Ah	3	ST	UINT16	fb90	PROFINET fieldbus state				1	1			Х	9301,
	4		UINT16		POWERLINK fieldbus state				1	1			Х	9303
	5		UINT16		EtherNet/IP fieldbus state				1	1			х	
	6		UINT16		ModbusTCP fieldbus state				1	1			х	
	0		UINT8		fieldbus state				1	1			х	9305,
2B5Ah	1	ST	UINT16	fb90	EtherCAT fieldbus state				1	1			Х	9306,
-	2		UINT16		CANopen fieldbus state				1	1			х	9307, 9308
	0		UINT8		fieldbus error code				1	1			Х	
	1		UINT16		EtherCAT fieldbus error code				1	1			х	9300,
2B5Bh	2	ST	UINT16	fb91	CANopen fieldbus error code				1	1			Х	9302
	3		UINT16		VARAN fieldbus error code				1	1			х	
	0		UINT8		fieldbus error code				1	1			х	
	1		UINT16		EtherCAT fieldbus error code				1	1			х	
	2		UINT16		CANopen fieldbus error code				1	1			х	
2B5Bh	3	ST	UINT32	fb91	PROFINET fieldbus error code				1	1			Х	9301,
	4		UINT16		POWERLINK fieldbus error code				1	1			х	9303
	5		UINT16		EtherNet/IP fieldbus error code				1	1			х	
	6		UINT16		ModbusTCP fieldbus error code				1	1			х	
	0		UINT8		fieldbus error code				1	1			Х	9305,
2B5Bh	1	ST	UINT16	fb91	EtherCAT fieldbus error code				1	1			х	9306,
-	2		UINT16		CANopen fieldbus error code				1	1			х	9307, 9308
2B64h	0	V	UINT8	fb100	node ID switch value				1	1			х	9301, 9303
2B65h	0	V	UINT8	fb101	adjusted node ID value	255	0	0	1	1				9301,

fb: fieldb	ous para	ameter												
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
														9303
2B66h	0	٧	UINT8	fb102	effective node ID	-			1	1			x	9301, 9303, 9305, 9306, 9307, 9308
2B69h	0	V	UINT32	fb105	MAC Address (EoE Channel)				1	1			х	9305, 9306, 9307, 9308
2B6Ah	0	V	UINT32	fb106	MAC Address (EthChannel)				1	1			х	9305, 9306, 9307, 9308
	0		UINT8		Ethernet over fieldbus IP configuration				1	1			х	
2B6Ch	1	ST	UINT32	fb108	IP address	4294967295	0	0	1	1				✓
	2		UINT32		subnet mask	4294967295	0	0	1	1				
	3		UINT32		gateway address	4294967295	0	0	1	1				
	0		UINT8		basic IP configuration				1	1			Х	9301,
	1		UINT32		IP address	4294967295	0	0	1	1				9303,
2B6Dh	2	ST	UINT32	fb109	subnet mask	4294967295	0	0	1	1				9305, 9306,
	3		UINT32		gateway address	4294967295	0	0	1	1				9307, 9308
	0		UINT8			2	2	2	1	1			х	9305,
2B6Eh	12	Α	UINT8	fb110	Scan names	32	0	0	1	1				9306, 9307, 9308
ODCE!	0	^	UINT8	£1. 4.4.4	DOWEDLINK DDDO -#	8	8	8	1	1			х	9301,
2B6Fh	18	Α	UINT8	fb111	POWERLINK RPDO offset	255	0	0	1	1				9303
00705	0	^	UINT8	fl- 4 4 0	DOWED INK TODO -#	8	8	8	1	1			х	9301,
2B70h	18	Α	UINT8	10112	POWERLINK TPDO offset	255	0	0	1	1				9303
2B71h	0	V	UINT8	fb113	EtherNet/IP Configuration	6	0	2	1	1				9301,

fb: fieldb	ous para	ameter												
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
														9303
2B72h	0	>	UINT8	fb114	ModbusTCP Configuration	2	0	2	1	1				9301, 9303
2B73h	0	>	UINT8	fb115	ModbusTCP SubIndex	255	0	0	1	1				9301, 9303

ec: enco	der par	ameter												
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2800h	0	>	UINT8	ec00	status encoder interface		-		1	1		х	X	9300, 9301, 9302, 9303, 9305, 9307
2801h	0	>	UINT16	ec01	error encoder interface				1	1		х	x	9300, 9301, 9302, 9303, 9305, 9307
2802h	0	٧	UINT8	ec02	warning encoder interf.				1	1		х	х	9300, 9301, 9302, 9303, 9305, 9307
280Eh	0	٧	UINT8	ec14	encoder interf. gen. settings	3	0	2	1	1				9300, 9301, 9302, 9303, 9305, 9307
2810h	0	V	UINT8	ec16	encoder type	255	0	0	1	1				9300, 9301, 9302, 9303, 9305, 9307
2811h	0	V	UINT8	ec17	detected encoder type				1	1			х	9300, 9301, 9302, 9303, 9305, 9307
2812h	0	V	UINT32	ec18	error encoder				1	1		Х	Х	9300,

Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
														9301
														9302 9303
														9305
														9307
														9300
														9301
2813h	0	V	UINT16	ec19	warning encoder				1	1		х	х	9302, 9303,
														9303
														9307
														9300
														9301
2816h	0	V	UINT16	ec22	rho encoder value				1	1		х	х	9302
20.0		•	0	0022	The disease raids				·					9303
														9305, 9307
														9300
														9301
2817h	0	V	UINT16	ec23	system offset (SM)	65535	0	57057	1	1		.,		9302
201711	U	V	UINTTO	e023	System onset (Sivi)	65535	U	57057	'	1		Х		9303
														9305
														9307
														9300, 9301,
														9302
2818h	0	V	UINT16	ec24	gear numerator	65535	0	1000	1	1				9303
														9305
														9307
														9300
														9301
2819h	0	V	UINT16	ec25	gear denominator	65535	1	1000	1	1				9302, 9303,
														9305
														9307
281Ah	0	V	UINT8	ec26	speed scan time	7	2	5	1	1				9300
201711		٧	CINTO	0020	Specia soan time	'	2]	'	'				9301

ec: enco	der par	ameter	,											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	ע
														9302, 9303, 9305, 9307
281Bh	0	V	UINT32	ec27	speed PT1-time	256000	0	1000	1	1000	ms			9300, 9301, 9302, 9303, 9305, 9307
281Ch	0	>	UINT8	ec28	revolution range	2	0	0	1	1				9300, 9301, 9302, 9303, 9305, 9307
281Dh	0	V	UINT32	ec29	signal periods per revolution	-2	0	2048	1	1				9300, 9301, 9302, 9303, 9305, 9307
281Eh	0	V	UINT8	ec30	abs periods number	10	1	1	1	1				9300, 9301, 9302, 9303, 9305, 9307
281Fh	0	V	UINT32	ec31	zero pulse pos.				1	1	INC		х	9300, 9301, 9302, 9303, 9305, 9307
2820h	0	V	UINT8	ec32	max. pos. error	180	0	20	1	1				9300, 9301, 9302,

542

ec: enco	der par	ameter												
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	ט
														9303, 9305, 9307
2821h	0	V	UINT16	ec33	abs. pos. accuracy	65535	0	4	1	1	INC			9300, 9301, 9302, 9303, 9305, 9307
2823h	0	V	UINT8	ec35	pos. calc. mode	7	0	0	1	1				9300, 9301, 9302, 9303
2823h	0	٧	UINT8	ec35	pos. calc. mode	63	0	0	1	1				9305, 9307
2824h	0	V	UINT8	ec36	several encoder functions	7	0	0	1	1				9300, 9301, 9302, 9303, 9305, 9307
2828h	0	>	UINT8	ec40	SSI singleturn res.	40	0	0	1	1				9300, 9301, 9302, 9303, 9305, 9307
2829h	0	V	UINT8	ec41	SSI multiturn res.	40	0	0	1	1				9300, 9301, 9302, 9303, 9305, 9307
282Ah	0	V	UINT8	ec42	SSI data format	31	0	0	1	1				9300, 9301, 9302, 9303,

ec: enco	der par	ameter												
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
														9305, 9307
282Bh	0	>	UINT8	ec43	SSI clock freq.	2	0	0	1	1				9300, 9301, 9302, 9303, 9305, 9307
282Ch	0	٧	UINT8	ec44	allocation absolute / incremental position	3	0	0	1	1				9300, 9301, 9302, 9303, 9305, 9307
282Eh	0	>	UINT8	ec46	encoder read/write	2	0	0	1	1				9300, 9301, 9302, 9303, 9305, 9307
282Fh	0	>	UINT8	ec47	status encoder r/w				1	1		х	х	9300, 9301, 9302, 9303, 9305, 9307
	0		UINT8			12	12	12	1	1			Х	9300,
2830h	112	Α	UINT8	ec48	saved encoder serial number				1	1			x	9301, 9302, 9303, 9305, 9307
	0		UINT8			12	12	12	1	1			Х	9300,
2831h	112	Α	UINT8	ec49	encoder serial number	255	0	0	1	1				9301, 9302, 9303, 9305,

ec: enco	der par	ameter	•											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
														9307
2832h	0	٧	UINT32	ec50	virtual round for linear encoder	4294967295	1	1	1	1			-	9300, 9301, 9302, 9303, 9305, 9307

ec: enco	der par	ameter	В											
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
4800h	0	>	UINT8	ec00	status encoder interface B				1	1		х	х	9300, 9301, 9302, 9303, 9305, 9307
4801h	0	٧	UINT16	ec01	error encoder interface B				1	1		х	х	9300, 9301, 9302, 9303, 9305, 9307
4802h	0	>	UINT8	ec02	warning encoder interf. B				1	1		х	х	9300, 9301, 9302, 9303, 9305, 9307
4810h	0	>	UINT8	ec16	encoder type B	20	0	0	1	1				9300, 9301, 9302, 9303
4810h	0	٧	UINT8	ec16	encoder type B	21	0	0	1	1				9305, 9307
4811h	0	V	UINT8	ec17	detected encoder type B				1	1			х	9300, 9301, 9302, 9303, 9305, 9307
4812h	0	V	UINT32	ec18	error encoder B				1	1		х	х	9300, 9301, 9302, 9303, 9305, 9307
4813h	0	V	UINT16	ec19	warning encoder B				1	1		Х	Х	9300,

ec: enco	der par	ameter	В											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	U
														9301, 9302, 9303, 9305,
4816h	0	V	UINT16	ec22	rho encoder value B				1	1		х	х	9307 9300, 9301, 9302, 9303, 9305, 9307
4817h	0	V	UINT16	ec23	system offset (SM) B	65535	0	57057	1	1		х		9300, 9301, 9302, 9303, 9305, 9307
4818h	0	V	UINT16	ec24	gear numerator B	65535	0	1000	1	1				9300, 9301, 9302, 9303, 9305, 9307
4819h	0	V	UINT16	ec25	gear denominator B	65535	1	1000	1	1				9300, 9301, 9302, 9303, 9305, 9307
481Ah	0	V	UINT8	ec26	speed scan time B	7	2	5	1	1				9300, 9301, 9302, 9303, 9305, 9307
481Bh	0	V	UINT32	ec27	speed PT1-time B	256000	0	1000	1	1000	ms			9300, 9301,

ec: enco	der par	ameter	В											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	ע
														9302, 9303, 9305, 9307
481Ch	0	>	UINT8	ec28	revolution range B	2	0	0	1	1				9300, 9301, 9302, 9303, 9305, 9307
481Dh	0	V	UINT32	ec29	signal periods per revolution B	-2	0	2048	1	1				9300, 9301, 9302, 9303, 9305, 9307
481Eh	0	V	UINT8	ec30	abs periods number B	10	1	1	1	1				9300, 9301, 9302, 9303, 9305, 9307
481Fh	0	V	UINT32	ec31	zero pulse pos. B				1	1	INC		х	9300, 9301, 9302, 9303, 9305, 9307
4820h	0	V	UINT8	ec32	max. pos. error B	180	0	20	1	1				9300, 9301, 9302, 9303, 9305, 9307
4821h	0	V	UINT16	ec33	abs. pos. accuracy B	65535	0	4	1	1	INC			9300, 9301, 9302,

ec: enco	der par	ameter	В											
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	ט
														9303, 9305, 9307
4823h	0	٧	UINT8	ec35	pos. calc. mode B	7	0	0	1	1				9300, 9301, 9302, 9303
4823h	0	٧	UINT8	ec35	pos. calc. mode B	63	0	0	1	1				9305, 9307
4824h	0	V	UINT8	ec36	several encoder functions B	7	0	0	1	1				9300, 9301, 9302, 9303, 9305, 9307
4828h	0	V	UINT8	ec40	SSI singleturn res. B	40	0	0	1	1				9300, 9301, 9302, 9303, 9305, 9307
4829h	0	V	UINT8	ec41	SSI multiturn res. B	40	0	0	1	1				9300, 9301, 9302, 9303, 9305, 9307
482Ah	0	V	UINT8	ec42	SSI data format B	31	0	0	1	1				9300, 9301, 9302, 9303, 9305, 9307
482Bh	0	V	UINT8	ec43	SSI clock freq. B	2	0	0	1	1				9300, 9301, 9302, 9303,

ec: enco	der par	ameter	В											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
														9305, 9307
482Ch	0	V	UINT8	ec44	allocation absolute / incremental position B	3	0	0	1	1				9300, 9301, 9302, 9303, 9305, 9307
	0		UINT8			12	12	12	1	1			Х	9300,
4830h	112	Α	UINT8	ec48	saved encoder serial number B				1	1			x	9301, 9302, 9303, 9305, 9307
	0		UINT8			12	12	12	1	1			Х	9300,
4831h	112	Α	UINT8	ec49	encoder serial number B	255	0	0	1	1				9301, 9302, 9303, 9305, 9307
4832h	0	V	UINT32	ec50	virtual round for linear encoder B	4294967295	1	1	1	1				9300, 9301, 9302, 9303, 9305, 9307

cs: conti	rol spec	ed para	meter											
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2700h	0	V	UINT8	cs00	control mode	19	0	16	1	1				✓
2701h	0	V	UINT32	cs01	KP speed [%Mn/rpm]	10737418	0	100	1	10000				✓
2703h	0	V	UINT16	cs03	variable KP speed gain	10240	0	0	1	1024				√
2704h	0	V	UINT16	cs04	var.KP speed max. offset	5120	0	0	100	1024	%			√
2705h	0	V	UINT32	cs05	Tn speed	1073741823	0	250	1	1000	ms			√
2706h	0	V	UINT16	cs06	variable KP speed offset	65535	0	0	1	10	%			√
2707h	0	V	UINT16	cs07	variable KI speed offset	65535	0	0	1	10	%			✓
2708h	0	V	UINT16	cs08	speed for max. KP/KI	10000	0	50	1	10	%			✓
2709h	0	V	UINT16	cs09	speed for normal KP/KI	10000	0	100	1	10	%			✓
270Ch	0	V	UINT16	cs12	(CiA 0x6072) max torque	10000	0	2000	1	10	%	х		✓
270Dh	0	V	INT16	cs13	torque limit mot. for.	10000	0	5000	1	10	%	х		✓
270Eh	0	V	INT16	cs14	torque limit mot. rev.	10000	-1	-1	1	10	%	х		✓
270Fh	0	V	INT16	cs15	torque limit gen. for.	10000	-2	-2	1	10	%	х		✓
2710h	0	V	INT16	cs16	torque limit gen. rev.	10000	-2	-2	1	10	%	х		✓
2711h	0	V	UINT32	cs17	inertia load (kg*cm^2)	2000000000	0	0	1	100				✓
2712h	0	V	UINT16	cs18	ref. position PT1-time	60000	0	0	1	1000	ms	х		✓
2713h	0	V	UINT16	cs19	ref. speed PT1-time	60000	0	0	1	1000	ms	х		✓
2714h	0	V	UINT16	cs20	torque ref. PT1-time	60000	0	1000	1	1000	ms			✓
2715h	0	V	UINT16	cs21	pretorque mode	2	0	2	1	1				✓
2716h	0	V	UINT16	cs22	pretorque PT1-time	60000	0	0	1	1000	ms	х		√
2717h	0	V	UINT16	cs23	pretorque delta time	8	1	4	1000	4000	ms			✓
2718h	0	V	UINT16	cs24	pretorque factor	60000	0	1000	1	10	%	х		✓
2719h	0	V	UINT16	cs25	speed ctrl (KP) adaption	8000	0	1000	1	10	%	х		✓
271Ah	0	V	UINT16	cs26	speed ctrl (KI) adaption	8000	0	1000	1	10	%	х		✓
271Bh	0	V	UINT8	cs27	speed ctrl KP/KI adapt mode	1	0	0	1	1				√
2763h	0	V	UINT8	cs99	optimisation factor	100	19	40	1	10				√

pn: prote	ection p	aramet	ter											
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2A03h	0	V	UINT16	pn03	OL warning level	1000	0	800	1	10	%	х		√
2A04h	0	V	UINT8	pn04	E.OL stop mode	1	0	0	1	1		х		√
2A05h	0	V	UINT16	pn05	OL2 warning level	1000	200	800	1	10	%	х		√
2A06h	0	>	UINT8	pn06	temperature warning setting mode	1	0	0	1	1		х	1	\
2A07h	0	٧	UINT16	pn07	OH warning level	1500	0	700	1	10	°C	х	1	\
2A08h	0	V	UINT8	pn08	E.OH stop mode	1	0	0	1	1		х		✓
2A09h	0	>	UINT16	pn09	OHI warning level	1500	0	600	1	10	°C	х	-	>
2A0Ah	0	٧	UINT8	pn10	E.OHI stop mode	1	0	0	1	1		х	1	\
2A0Bh	0	V	UINT16	pn11	dOH warning level	2000	0	1000	1	10	°C	х		✓
2A0Ch	0	V	UINT8	pn12	E.dOH stop mode	9	0	0	1	1		х		✓
2A0Dh	0	V	UINT16	pn13	E.dOH delay time	1200	0	0	1	10	S	х		√
2A0Eh	0	V	UINT16	pn14	dOH error level	2000	0	1500	1	10	°C	х		✓
2A0Fh	0	V	UINT16	pn15	OH2 warning level	1000	0	1000	1	10	%	х		✓
2A10h	0	V	UINT8	pn16	E.OH2 stop mode	9	0	0	1	1		х		√
2A11h	0	V	UINT16	pn17	eff. load time	30000	1	100	1	100	s	х		√
2A12h	0	V	INT32	pn18	sw switch limit left	2147483647	-2147483648	-2147483648	1	1	INC	х		✓
2A13h	0	V	INT32	pn19	sw switch limit right	2147483647	-2147483648	2147483647	1	1	INC	х		✓
2A14h	0	V	UINT8	pn20	E.SW-switch stop mode	8	0	7	1	1		х		√
2A15h	0	V	UINT16	pn21	fieldbus watchdog time	16000	0	4000	1	4	ms	х		√
2A16h	0	V	UINT8	pn22	E.fb watchdog stop mode	8	0	7	1	1		х		√
2A17h	0	V	UINT8	pn23	E.fb heartbeat stop mode	8	0	7	1	1		х		✓
2A1Ah	0	V	UINT16	pn26	overspeed level	8000	0	2000	1	10	%	х		√
2A1Bh	0	V	UINT8	pn27	E.overspeed stop mode	8	0	0	1	1		х		√
2A1Ch	0	V	UINT32	pn28	warning mask	8388607	0	127	1	1		х		√
2A1Dh	0	V	UINT8	pn29	prg. error stop. mode	9	0	7	1	1		х	1	>
2A1Eh	0	V	UINT16	pn30	prg. error source	65535	0	0	1	1		х		√
2A1Fh	0	V	UINT16	pn31	enable braking trans. source	4095	0	0	1	1		х	-	√
2A20h	0	V	UINT16	pn32	braking transistor level	15000	0	7800	1	10	V			√

pn: prote	ection p	arame	ter											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2A21h	0	V	UINT16	pn33	braking transistor options	127	0	5	1	1				✓
2A22h	0	V	UINT8	pn34	E.encoder A stop mode	8	0	0	1	1		x		9300, 9301, 9302, 9303, 9305, 9307
2A23h	0	V	UINT8	pn35	E. encoder B stop mode	8	0	7	1	1		х		9300, 9301, 9302, 9303, 9305, 9307
2A24h	0	V	INT32	pn36	max acc/dec level [s-2]	1747626666	1	436906667	1	100		х		✓
2A25h	0	٧	UINT8	pn37	E.max acc/dec stop mode	8	0	7	1	1		х		✓
2A26h	0	٧	UINT16	pn38	speed difference level	8000	0	50	1	10	%	Х		✓
2A27h	0	V	UINT16	pn39	speed difference time	65535	0	100	1	4	ms	х		✓
2A28h	0	٧	UINT8	pn40	speed difference stop mode	8	0	7	1	1		х		✓
2A29h	0	>	UINT16	pn41	speed difference calculation mode	3	0	1	1	1		х		✓
2A2Ah	0	V	UINT8	pn42	E.Uph stopping mode	8	0	7	1	1		х		✓
2A2Dh	0	٧	INT16	pn45	fault reaction time	30000	0	4000	1	4	ms	х		✓
2A2Eh	0	٧	UINT16	pn46	fault reaction end src	4095	0	0	1	1		х		✓
2A2Fh	0	٧	INT32	pn47	fault reaction ref velocity	128000	-128000	0	1	1	rpm	х		✓
2A30h	0	٧	INT32	pn48	fr acceleration for [s-2]	1747626666	1	2000	1	100		х		✓
2A31h	0	V	INT32	pn49	fr deceleration for [s-2]	1747626666	1	2000	1	100		х		✓
2A32h	0	V	INT32	pn50	fr acceleration rev [s-2]	1747626666	1	2000	1	100		Х		✓
2A33h	0	V	INT32	pn51	fr deceleration rev [s-2]	1747626666	1	2000	1	100		х		√
2A34h	0	V	INT32	pn52	fr for acc jerk ls [s-3]	104857600	50	10000	1	100		х		√
2A35h	0	V	INT32	pn53	fr for acc jerk hs [s-3]	104857600	50	10000	1	100		х		✓
2A36h	0	V	INT32	pn54	fr for dec jerk hs [s-3]	104857600	50	10000	1	100		х		✓
2A37h	0	V	INT32	pn55	fr for dec jerk Is [s-3]	104857600	50	10000	1	100		х		✓

pn: prote	ection p	arame	ter											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2A38h	0	V	INT32	pn56	fr rev acc jerk ls [s-3]	104857600	50	10000	1	100		х		✓
2A39h	0	V	INT32	pn57	fr rev acc jerk hs [s-3]	104857600	50	10000	1	100		х		✓
2A3Ah	0	V	INT32	pn58	fr rev dec jerk hs [s-3]	104857600	50	10000	1	100		х		✓
2A3Bh	0	V	INT32	pn59	fr rev dec jerk ls [s-3]	104857600	50	10000	1	100		х		✓
2A3Ch	0	V	UINT8	pn60	fault reaction ramp mode	255	0	0	1	1		х		✓
2A3Eh	0	V	UINT8	pn62	fault reaction properties	1	0	0	1	1		х		✓
2A46h	0	V	UINT16	pn70	overspeed factor (EMF)	1000	0	900	1	10	%			✓
2A47h	0	V	UINT8	pn71	E. overspeed (EMF) st. mode	8	0	0	1	1		х		✓
2A48h	0	V	UINT32	pn72	overspeed level (EMF)				1	8192	rpm	х	х	✓
2A49h	0	V	UINT8	pn73	E.enc A changed stop mode	8	0	7	1	1		х		9300, 9301, 9302, 9303, 9305, 9307
2A4Ah	0	٧	UINT8	pn74	E.enc B changed stop mode	8	0	7	1	1	ł	х		9300, 9301, 9302, 9303, 9305, 9307
2A4Ch	0	V	UINT16	pn76	UP2 delay time	10000	0	0	1	1000	S			✓
2A4Dh	0	V	UINT8	pn77	E.UP2 stopping mode	9	0	7	1	1				√
2A4Eh	0	V	UINT8	pn78	limit switch forward stop mode	8	0	7	1	1		х		✓
2A4Fh	0	V	UINT8	pn79	limit switch reverse stop mode	8	0	7	1	1		х		✓
2A50h	0	V	UINT8	pn80	safety stop mode	8	0	7	1	1		x		9301, 9303, 9305, 9306, 9307, 9308
2A51h	0	V	UINT8	pn81	warning OH stop mode	8	0	6	1	1		х		√

pn: prote	ection p	arame	ter											
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2A52h	0	V	UINT8	pn82	warning OHI stop mode	8	0	6	1	1		х		✓
2A53h	0	V	UINT16	pn83	auto retry activation	1	0	0	1	1				✓
	0		UINT8		auto retry UP configuration				1	1		Х	Х	
2A54h	1	ST	UINT16	pn84	auto retry time	1000	0	100	1	100	S			,
2A34II	2	31	UINT16	μπο4	fault supression mode	7	0	0	1	1				✓
	3		INT32		auto retry UP acceleration [s-2]	1747626666	0	0	1	100				
	0		UINT8		variable mod off time				1	1		Х	Х	
2A55h	1	ST	UINT8	pn85	customer time usage	15	0	0	1	1		Х		✓
	2		UINT16		customer modulation off time	1000	1	5	1	100	S	Х		
	0		UINT8		blockage protection				1	1		Х	Х	
	1		UINT16		blockage mode	16383	0	0	1	1		Х		
	2		UINT32		detection speed level	81920000	0	819200	1	8192	rpm	Х		
2A57h	3	ST	UINT16	pn87	detection time	10000	0	100	1	100	S	х		✓
	4		UINT16		blockage reaction time	10000	0	100	1	100	S	Х		
	5		UINT16		lower limit reduce	100	0	20	1	1	%	Х		
	6		UINT8		blockage detection status				1	1		Х	Х	
	0		UINT8		relative load				1	1		х	Х	
	1		UINT16		display configuration	255	0	0	1	1		Х		
2A58h	2	ST	UINT16	pn88	application torque limit	10000	0	0	1	10	%	Х		✓
	3		UINT16		active torque limit				1	10	%	Х	Х	
	4		UINT16		active thermal limit				1	10	%	Х	Х	

aa: adjus	stment	assist.	parameter											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2901h	0	٧	INT8	aa01	FPGA configuration state				1	1		х	х	9300, 9301, 9302, 9303
2910h	0	V	UINT32	aa16	user parameter 0	4294967295	0	0	1	1		х		✓
2911h	0	V	UINT32	aa17	user parameter 1	4294967295	0	0	1	1		х		✓
2912h	0	V	UINT32	aa18	user parameter 2	4294967295	0	0	1	1		х		✓
2913h	0	V	UINT32	aa19	user parameter 3	4294967295	0	0	1	1		х		✓
2914h	0	V	UINT32	aa20	user parameter 4	4294967295	0	0	1	1		х		✓
2915h	0	V	UINT32	aa21	user parameter 5	4294967295	0	0	1	1		х		✓
2916h	0	V	UINT32	aa22	user parameter 6	4294967295	0	0	1	1		х		✓
2917h	0	V	UINT32	aa23	user parameter 7	4294967295	0	0	1	1		х		✓
2918h	0	V	UINT32	aa24	debug address setting	4294967295	0	0	1	1				✓
2920h	0	V	UINT8	aa32	int. data 1 access mode	2	0	1	1	1		х		✓
2921h	0	V	UINT32	aa33	int. data 1 address	4294967295	0	0	1	1		х		✓
2923h	0	V	UINT8	aa35	int. data 2 access mode	2	0	1	1	1		Х		✓
2924h	0	V	UINT32	aa36	int. data 2 address	4294967295	0	0	1	1		х		✓
2926h	0	V	UINT8	aa38	int. data 3 access mode	2	0	1	1	1		х		✓
2927h	0	V	UINT32	aa39	int. data 3 address	4294967295	0	0	1	1		х		✓
2929h	0	V	UINT8	aa41	int. data 4 access mode	2	0	1	1	1		Х		✓
292Ah	0	V	UINT32	aa42	int. data 4 address	4294967295	0	0	1	1		х		✓
292Ch	0	V	UINT8	aa44	int. data 5 access mode	2	0	2	1	1		Х		✓
292Dh	0	V	UINT32	aa45	int. data 5 address	4294967295	0	0	1	1		х		✓
292Fh	0	V	UINT8	aa47	int. data 6 access mode	2	0	2	1	1		Х		✓
2930h	0	V	UINT32	aa48	int. data 6 address	4294967295	0	0	1	1		х		✓
2932h	0	V	UINT8	aa50	int. data 7 access mode	2	0	2	1	1		х		✓
2933h	0	V	UINT32	aa51	int. data 7 address	4294967295	0	0	1	1		х		√
2935h	0	V	UINT8	aa53	int. data 8 access mode	2	0	2	1	1		х		✓
2936h	0	V	UINT32	aa54	int. data 8 address	4294967295	0	0	1	1		Х		✓

aa: adjus	stment	assist.	parameter											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2950h	0	V	UINT8	aa80	found optimal current	1	0	1	1	1				✓
2955h	0	V	UINT16	aa85	period fast irq				1	5	μs	Х	Х	9300
2955h	0	V	UINT16	aa85	period fast irq				1	6	μs	x	x	9301, 9303
2955h	0	V	UINT16	aa85	period fast irq				4	5	μs	Х	Х	9302
2955h	0	٧	UINT16	aa85	period fast irq				1000	9375	μs	х	х	9305, 9306, 9307, 9308
2956h	0	V	UINT16	aa86	time fast irq				1	5	μs	Х	Х	9300
2956h	0	>	UINT16	aa86	time fast irq				1	6	μs	x	x	9301, 9303
2956h	0	V	UINT16	aa86	time fast irq				4	5	μs	Х	Х	9302
2956h	0	٧	UINT16	aa86	time fast irq				1000	9375	μs	х	х	9305, 9306, 9307, 9308
2957h	0	V	UINT16	aa87	mean time fast irq				1	5	μs	Х	Х	9300
2957h	0	>	UINT16	aa87	mean time fast irq				1	6	μs	х	х	9301, 9303
2957h	0	V	UINT16	aa87	mean time fast irq				4	5	μs	Х	Х	9302
2957h	0	٧	UINT16	aa87	mean time fast irq				1000	9375	μs	х	х	9305, 9306, 9307, 9308
2958h	0	V	UINT16	aa88	max time fast irq				1	5	μs	Х	Х	9300
2958h	0	>	UINT16	aa88	max time fast irq				1	6	μs	x	х	9301, 9303
2958h	0	V	UINT16	aa88	max time fast irq				4	5	μs	Х	Х	9302
2958h	0	٧	UINT16	aa88	max time fast irq				1000	9375	μs	х	х	9305, 9306, 9307, 9308
2959h	0	V	UINT16	aa89	error level fast irq	65535	0	0	1	10	%			✓

aa: adjus	stment	assist.	parameter	,										
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
295Ah	0	V	UINT16	aa90	period mid irq				1	5	μs	Х	Х	9300
295Ah	0	>	UINT16	aa90	period mid irq				1	6	μs	x	х	9301, 9303
295Ah	0	V	UINT16	aa90	period mid irq				4	5	μs	Х	Х	9302
295Ah	0	>	UINT16	aa90	period mid irq				1000	9375	μs	х	х	9305, 9306, 9307, 9308
295Bh	0	V	UINT16	aa91	time mid irq				1	5	μs	Х	Х	9300
295Bh	0	>	UINT16	aa91	time mid irq				1	6	μs	x	x	9301, 9303
295Bh	0	V	UINT16	aa91	time mid irq				4	5	μs	Х	Х	9302
295Bh	0	>	UINT16	aa91	time mid irq				1000	9375	μs	х	х	9305, 9306, 9307, 9308
295Ch	0	V	UINT16	aa92	mean time mid irq				1	5	μs	Х	Х	9300
295Ch	0	>	UINT16	aa92	mean time mid irq				1	6	μs	x	х	9301, 9303
295Ch	0	V	UINT16	aa92	mean time mid irq				4	5	μs	Х	Х	9302
295Ch	0	٧	UINT16	aa92	mean time mid irq				1000	9375	μs	х	х	9305, 9306, 9307, 9308
295Dh	0	V	UINT16	aa93	max time mid irq				1	5	μs	Х	Х	9300
295Dh	0	٧	UINT16	aa93	max time mid irq				1	6	μs	x	х	9301, 9303
295Dh	0	V	UINT16	aa93	max time mid irq				4	5	μs	Х	Х	9302
295Dh	0	٧	UINT16	aa93	max time mid irq				1000	9375	μs	х	х	9305, 9306, 9307, 9308
295Eh	0	V	UINT16	aa94	error level mid irq	65535	0	0	1	10	%			✓
295Fh	0	V	UINT16	aa95	period slow irq				1	5	μs	Х	Х	9300

aa: adjus	stment	assist.	parameter	•										
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
295Fh	0	V	UINT16	aa95	period slow irq				1	6	μs	х	х	9301, 9303
295Fh	0	V	UINT16	aa95	period slow irq				4	5	μs	х	х	9302
295Fh	0	>	UINT16	aa95	period slow irq				1000	9375	μs	x	х	9305 9306 9307 9308
2960h	0	V	UINT16	aa96	time slow irq				1	5	μs	Х	Х	9300
2960h	0	>	UINT16	aa96	time slow irq				1	6	μs	х	х	9301, 9303
2960h	0	V	UINT16	aa96	time slow irq				4	5	μs	Х	Х	9302
2960h	0	>	UINT16	aa96	time slow irq				1000	9375	μs	х	х	9305, 9306, 9307, 9308
2961h	0	٧	UINT16	aa97	mean time slow irq				1	5	μs	Х	Х	9300
2961h	0	>	UINT16	aa97	mean time slow irq				1	6	μs	х	х	9301, 9303
2961h	0	V	UINT16	aa97	mean time slow irq				4	5	μs	Х	Х	9302
2961h	0	V	UINT16	aa97	mean time slow irq				1000	9375	μs	х	х	9305, 9306, 9307, 9308
2962h	0	V	UINT16	aa98	max time slow irq				1	5	μs	Х	х	9300
2962h	0	V	UINT16	aa98	max time slow irq				1	6	μs	х	х	9301, 9303
2962h	0	V	UINT16	aa98	max time slow irq				4	5	μs	х	х	9302
2962h	0	٧	UINT16	aa98	max time slow irq				1000	9375	μs	х	х	9305 9306 9307 9308
2963h	0	V	UINT16	aa99	error level slow irq	65535	0	0	1	10	%			✓
2965h	0	V	UINT16	aa101	time main task				1	16	ms	х	х	✓
2967h	0	V	UINT16	aa103	max time main task	0	0	0	1	16	ms	Х		✓

Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	0		UINT8		power unit control word				1	1			х	9302
2F1Ah	1	ST	UINT16	sb26	power unit CPU1 control word	65535	0	0	1	1				9303,
	2		UINT16		power unit CPU2 control word	65535	0	0	1	1				9305, 9306
	0		UINT8		power unit status word				1	1		х	х	9302,
2F1Bh	1	ST	UINT16	sb27	power unit CPU1 status word				1	1		х	х	9303,
	2		UINT16		power unit CPU2 status word				1	1		х	х	9305, 9306
2F1Ch	0	V	UINT8	sb28	safety mod. control word	255	0	0	1	1				9301, 9303, 9305, 9306, 9307, 9308
2F1Dh	0	V	UINT32	sb29	safety mod. status word				1	1		x	x	9301, 9303, 9305, 9306, 9307, 9308
2F20h	0	Α	UINT8	sb32	internal communication	3	3	3	1	1			Х	
21 2011	13	, ,	UINT8	3502	acknowledge				1	1		Х	Х	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	0		UINT8		power unit int. comm. error counter				1	1			х	9302,
2F21h	1	ST	UINT16	sb33	power unit int. comm. CPU1 error counter	0	0	0	1	1				9303, 9305,
	2		UINT16		power unit int. comm. CPU2 er- ror counter	0	0	0	1	1				9306
2F22h	0	V	UINT16	sb34	safety mod. int. comm. error counter	0	0	0	1	1				9301, 9303
	0		UINT8			3	3	3	1	1			х	9305,
2F22h	13	Α	UINT16	sb34	safety mod. int. comm. error counter	0	0	0	1	1				9306, 9307, 9308

sb: inter	nal com	nmunic	ation para	meter										
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2F23h	0	٧	UINT16	sb35	enc. interf. int. comm. error counter	0	0	0	1	1				9300, 9301, 9302, 9303
05001	0	^	UINT8	-1-05	enc. interf. int. comm. error	3	3	3	1	1			х	9305,
2F23h	13	Α	UINT16	sb35	counter	0	0	0	1	1				9307
2F24h	0	V	UINT8	sb36	enc. type A err. address				1	1			х	9300, 9301, 9302, 9303, 9305, 9307
2F25h	0	V	UINT8	sb37	enc. type A err. acknowledge				1	1			x	9300, 9301, 9302, 9303, 9305, 9307
2F26h	0	V	UINT8	sb38	enc. type B err. address				1	1			х	9300, 9301, 9302, 9303, 9305, 9307
2F27h	0	V	UINT8	sb39	enc. type B err. acknowledge				1	1			х	9300, 9301, 9302, 9303, 9305, 9307
2F28h	0	V	UINT32	sb40	safety mod. status word				1	1		x	х	9301, 9303, 9305, 9306, 9307, 9308

sb: interi	nal com	munic	ation para	meter										
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
2F29h	0	٧	UINT32	sb41	power unit CPU2 software version				1	1	-		х	9302, 9303, 9305, 9306
2F2Ah	0	V	UINT32	sb42	power unit CPU2 software date	-			1	1	-		х	9302, 9303, 9305, 9306
	0		UINT8			8	8	8	1	1			Х	9302,
2F50h	18	Α	UINT32	sb80	data long array	4294967295	0	0	1	1				9303, 9305, 9306
2F51h	0	٧	UINT8	sb81	data block nr	255	0	0	1	1				9302, 9303, 9305, 9306
2F52h	0	V	UINT8	sb82	data blockwrite ready	1	0	0	1	1				9302, 9303, 9305, 9306

Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
3001h	0	V	INT16	ud01	password	9999	0	0	1	1		х		√
3002h	0	V	UINT32	ud02	recipe options	1	0	0	1	1		Х		√
3003h	0	V	UINT16	ud03	recipe inputs	16383	0	0	1	1		Х		√
3004h	0	V	UINT8	ud04	start recipe	255	0	0	1	1		Х		√
	0		UINT8		recipe status				1	1		Х	Х	
	1		UINT8		last successful recipe ID				1	1		Х	х	
	2		UINT8		download status				1	1		Х	Х	
3007h	3	ST	UINT8	ud07	info recipe ID				1	1		Х	Х	√
	4		UINT16		actual line				1	1		Х	х	
	5		UINT8		error code				1	1		Х	х	
000 11	0	^	UINT8		and the black and the	16	16	16	1	1			Х	,
300Ah	116	Α	UINT32	ud10	exception history date				1	1	*1	Х	х	√
300Bh	0	Α	UINT8	ud11	evention history time	16	16	16	1	1			Х	,
300011	116	Α	UINT32	uu i i	exception history time				1	1	*1	Х	Х	√
300Ch	0	Α	UINT8	ud12	history exception state	16	16	16	1	1			Х	
300011	116		UINT8	uu12	Thistory exception state				1	1		Х	Х	V
300Dh	0	Α	UINT8	ud13	history data 1	16	16	16	1	1			Х	
300DII	116		UINT32	uu 15	Thistory data 1				1	1		Х	Х	
300Eh	0	Α	UINT8	ud14	history data 2	16	16	16	1	1			Х	
000211	116	, ,	UINT32	4411	Thotory data 2				1	1		Х	Х	L `
300Fh	0	Α	UINT8	ud15	history data 3	16	16	16	1	1			Х	
	116		UINT32						1	1		Х	Х	<u> </u>
3010h	0	Α	UINT8	ud16	history data 4	16	16	16	1	1			Х	
	116		UINT32		·				1	1		Х	Х	
3011h	0	V	UINT32	ud17	history data 1 selector	16777215	0	8292	1	1				✓
3012h	0	V	UINT32	ud18	history data 2 selector	16777215	0	11280	1	1				✓
3013h	0	V	UINT32	ud19	history data 3 selector	16777215	0	11281	1	1				✓
3014h	0	V	UINT32	ud20	history data 4 selector	16777215	0	76825	1	1				✓
	0		UINT8		OL2 current limits				1	1		Х	х	
301Eh	1	ST	UINT32	ud30	Icont offset				1	100	Α	Х	Х	✓
	2		UINT32		Icont derating				1	100	Α	Х	Х	

ud: user		on para	1		T	T								
Index	Sub- Idx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	3		UINT32		Icont act switching freq				1	100	Α	Х	Х	
	4		UINT32		Imax OL2				1	100	Α	Х	Х	
	5		UINT32		Imax control				1	100	Α	Х	Х	
	0		UINT8		OL2 diagnostic counter				1	1		Х	Х	
201Fb	1	ST	UINT32	424	basic current				1	5	S		Х	,
301Fh	2	31	UINT32	ud31	standard increase				1	5	S		Х	√
	3		UINT32		extended increase				1	5	S		Х	
3028h	0	V	UINT16	ud40	vl velocity limit options	65535	0	0	1	1				✓
	0		UINT8		maximum speed				1	1			Х	
	1		INT32		max speed mot for	32000	0	2000	1	1	rpm			
3029h	2	ST	INT32	ud41	max speed mot rev	32000	0	2000	1	1	rpm			✓
	3	•	INT32		max speed gen for	32000	0	2000	1	1	rpm			
	4	•	INT32		max speed gen rev	32000	0	2000	1	1	rpm			
	0		UINT8		lower limit level				1	1			Х	
	1		INT32		lower limit level mot for	32000	0	1000	1	1	rpm			
302Ah	2	ST	INT32	ud42	lower limit level mot rev	32000	0	1000	1	1	rpm			✓
	3	•	INT32		lower limit level gen for	32000	0	1000	1	1	rpm			
	4		INT32		lower limit level gen rev	32000	0	1000	1	1	rpm			
	0		UINT8		average times				1	1			Х	
302Bh	1	ST	UINT16	ud43	settle time	8000	0	100	1	1000	S			
0022	2	.	UINT16		average time dyn limit calculation	8000	0	1000	1	1000	S			
	0		UINT8		maximal power				1	1			Х	
	1		UINT32		max power mot for	1000000	0	4000	1	1000	kW			
302Ch	2	ST	UINT32	ud44	max power mot rev	1000000	0	4000	1	1000	kW			✓
	3	•	UINT32		max power gen for	1000000	0	4000	1	1000	kW			
	4		UINT32		max power gen rev	1000000	0	4000	1	1000	kW			
302Dh	0	V	INT16	ud45	power hysteresis	2000	1000	1050	1	1000				✓
302Eh	0	V	UINT32	ud46	slow torque PT1	500000	0	20000	1	1000	ms			√
302Fh	0	V	INT32	ud47	speed hysteresis for ramp out	262144000	0	40960	1	8192	rpm			√
3030h	0	V	INT32	ud48	speed level for cont calc	262144000	0	40960	1	8192	rpm			√

Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
3031h	0	V	INT16	ud49	dyn vel limit state display				1	1		х	Х	✓
	0		UINT8		F5 compatibility objects				1	1		Х	Х	
	1		UINT16		option code	255	0	0	1	1				
	2	•	UINT16		customer controlword 1	65535	0	0	1	1		Х		
	3		UINT16		customer controlword 2	0	0	0	1	1		Х		
	4	•	UINT16		customer statusword 1				1	1		Х	Х	
	5		UINT16		customer statusword 2				1	1		Х	Х	
00001	6	O.T.	INT16	150	percental set speed	16384	-16384	0	100	16384	%	Х		,
3032h	7	ST	INT16	ud50	actual speed				100	16384	%	Х	Х	√
	8		INT16		actual torque				1	1	Nm	Х	Х	
	9	•	INT16		inverter temperature				1	1	°C	Х	Х	
	10	•	INT16		motor temperature				1	1	°C	Х	Х	
	11	•	UINT16		inverter temperature				1	1		Х	Х	
	12	•	UINT16		relative load				1	1	%	Х	Х	
	13		UINT16		reference speed	65535	10	3000	1	1	rpm	Х		
	0		UINT8		liquid cooling ctrl				1	1		Х	Х	
	1	•	UINT16		source select	63	0	2	1	1		Х		
	2		UINT16		ref value	1000	0	500	1	10	°C	Х		
	3		UINT32		Kp [%PWM load per 1K]	100000	0	5000	1	1000				
	4		UINT32		Tn	500000000	0	300000000	1	1000	ms	Х		9302,
3035h	5	ST	INT16	ud53	PI ctrl out				1	100	%	Х	Х	9303,
303311	6	31	UINT16	uuss	manual setting	1000	0	0	1	10	%	Х		9305,
	7		UINT16		PWM period	200	40	120	1	10	S	Х		9306
	8		UINT8		PWM start value	100	0	0	1	1	%	Х		
	9		UINT8		PWM end value	100	0	100	1	1	%	Х		
	10		UINT16		minimal Pulse length	500	0	1	1	100	s	Х	1	
	11		INT16		PWM actual load				1	100	%	Х	Х	
3036h	0	V	UINT8	ud54	heatsink cooling PWM out state	1	0	0	1	1				9302, 9303, 9305, 9306
3037h	0	ST	UINT8	ud55	motor cooling ctrl				1	1		Х	Х	9302,

ud: user	definiti	on par	a											
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	1		UINT16		source select	33	0	0	1	1		Х		9303,
	2		UINT16		ref value	2000	0	1000	1	10	°C	Х		9305, 9306
	3		UINT32		Kp [%PWM load per 1K]	100000	0	5000	1	1000				9300
	4		UINT32		Tn	500000000	0	300000000	1	1000000	S	х		
	5		INT16		PI ctrl out				1	100	%	х	Х	
	6		UINT16		manual setting	1000	0	0	1	10	%	х		
	7		UINT16		PWM period	1200	40	600	1	10	S	х		
	8		UINT8		PWM start value	100	0	0	1	1	%	Х		
	9		UINT8		PWM end value	100	0	100	1	1	%	х		
	10		UINT16		minimal Pulse length	600	0	300	1	100	S	х		
	11		INT16		PWM actual load				1	100	%	х	Х	
3038h	0	V	UINT8	ud56	motor cooling PWM out state				1	1			х	9302, 9303, 9305, 9306

Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
3200h	0	V	UINT16	di00	dig. input logic	4095	0	0	1	1		х		✓
3201h	0	V	UINT32	di01	dig. input src. sel.	16777215	0	0	1	1				✓
3202h	0	V	UINT16	di02	dig. input ext. src.	4095	0	0	1	1		х		✓
3204h	0	V	UINT16	di04	digital noise filter	4000	0	0	1	2	ms	х		✓
320Ah	0	V	UINT16	di10	RUN input	65535	0	0	1	1		Х		✓
320Bh	0	V	UINT16	di11	RST input	65535	0	0	1	1		Х		✓
320Ch	0	٧	UINT16	di12	CA input	65535	0	0	1	1		Х		✓
320Dh	0	V	UINT16	di13	CA mask	65535	0	0	1	1		Х		✓
320Eh	0	V	UINT16	di14	CB input	65535	0	0	1	1		х		√
320Fh	0	V	UINT16	di15	CB mask	65535	0	0	1	1		Х		✓
3210h	0	V	UINT16	di16	forward input	65535	0	0	1	1		Х		√
3211h	0	V	UINT16	di17	reverse input	65535	0	0	1	1		х		√
3212h	0	V	UINT16	di18	vl zero speed input	65535	0	0	1	1		Х		✓
3213h	0	V	UINT16	di19	start posi/homing input	65535	0	0	1	1		Х		✓
3214h	0	V	UINT16	di20	invert input	65535	0	0	1	1		Х		✓
3215h	0	V	UINT16	di21	index input	65535	0	0	1	1		Х		✓
3216h	0	V	UINT16	di22	index noise filter	4000	0	0	1	2	ms	х		✓
3217h	0	V	UINT16	di23	halt input	65535	0	0	1	1		х		√
	0		UINT8		controlword input setting				1	1			х	
321Ch	1	ST	UINT16	di28	cw input 1	15	0	0	1	1				✓
	2		UINT16		cw input 2	15	0	0	1	1				
321Dh	0	V	UINT16	di29	digital input controlword				1	1		Х	Х	✓
	0		UINT8		I1 input function				1	1		Х	Х	
321Eh	1	ST	UINT32	di30	I1 input function low				1	1		Х	Х	✓
	2		UINT32		I1 input function high				1	1		Х	Х	
204 El-	0	C.T.	UINT8	4:04	12 input function				1	1		X	X	,
321Fh	2	ST	UINT32 UINT32	di31	12 input function low				1	1		X	X	√
	0		UINT8		I2 input function high I3 input function				1	1		X	X	
3220h	1	ST	UINT32	di32	13 input function low				1	<u>'</u> 1		X	X	✓

Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	2		UINT32		I3 input function high				1	1		Х	Х	
	0		UINT8		14 input function				1	1		х	Х	
3221h	1	ST	UINT32	di33	14 input function low				1	1		х	Х	√
	2		UINT32		I4 input function high				1	1		Х	Х	
	0		UINT8		I5 input function				1	1		х	Х	
3222h	1	ST	UINT32	di34	I5 input function low				1	1		Х	Х	✓
	2		UINT32		I5 input function high				1	1		Х	Х	
	0		UINT8		I6 input function				1	1		Х	Х	
3223h	1	ST	UINT32	di35	I6 input function low				1	1		Х	Х	✓
	2		UINT32		I6 input function high				1	1		Х	Х	
	0		UINT8		17 input function				1	1		х	Х	
3224h	1	ST	UINT32	di36	17 input function low				1	1		х	Х	✓
	2		UINT32		17 input function high				1	1		Х	Х	
	0		UINT8		18 input function				1	1		Х	Х	
3225h	1	ST	UINT32	di37	18 input function low				1	1		Х	Х	✓
	2		UINT32		18 input function high				1	1		Х	Х	
	0		UINT8		IA input function				1	1		Х	Х	
3226h	1	ST	UINT32	di38	IA input function low				1	1		Х	Х	✓
	2		UINT32		IA input function high				1	1		Х	Х	
	0		UINT8		IB input function				1	1		Х	Х	
3227h	1	ST	UINT32	di39	IB input function low				1	1		Х	Х	✓
	2		UINT32		IB input function high				1	1		Х	Х	
	0		UINT8		IC input function				1	1		Х	Х	
3228h	1	ST	UINT32	di40	IC input function low				1	1		Х	Х	✓
	2		UINT32		IC input function high				1	1		Х	Х	
	0		UINT8		ID input function				1	1		х	Х	
3229h	1	ST	UINT32	di41	ID input function low				1	1		Х	Х	✓
	2		UINT32		ID input function high				1	1		Х	Х	
	0		UINT8		STO1 input function				1	1		Х	Х	
322Ah	1	ST	UINT32	di42	STO1 input function low				1	1		Х	Х	✓
	2		UINT32		STO1 input function high				1	1		х	Х	

di: digita	l input	parame	eter											
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	0		UINT8		STO2 input function				1	1		Х	Х	
322Bh	1	ST	UINT32	di43	STO2 input function low				1	1		Х	х	✓
	2		UINT32		STO2 input function high				1	1		х	Х	ĺ
	0		UINT8		CW 1 input function				1	1		Х	Х	
322Ch	1	ST	UINT32	di44	CW 1 input function low				1	1		Х	х	✓
	2		UINT32		CW 1 input function high				1	1		Х	х	Ì
	0		UINT8		CW 2 input function				1	1		х	Х	
322Dh	1	ST	UINT32	di45	CW 2 input function low				1	1		Х	х	✓
	2		UINT32		CW 2 input function high				1	1		х	Х	l

hm: hom	ing par	ameter												
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
3100h	0	٧	INT32	hm00	(CiA 0x607C) home offset	2147483647	-2147483648	0	1	1		х		√
3101h	0	V	INT8	hm01	(CiA 0x6098) homing method	35	1	35	1	1		х		√
3102h	0	٧	UINT32	hm02	(CiA 0x6099 [1]) speed during search for switch	2147483647	0	800	1	8	rpm	х		✓
3103h	0	٧	UINT32	hm03	(CiA 0x6099 [2]) speed during search for zero	2147483647	0	400	1	8	rpm	х		✓
3104h	0	٧	INT32	hm04	(CiA 0x609A) homing acceleration	1747626666	1	2000	1	100		х		✓
3105h	0	V	UINT32	hm05	digital inputs				1	1		х	х	✓
3106h	0	٧	UINT16	hm06	negative limit switch source	65535	0	0	1	1		х		✓
3107h	0	V	UINT16	hm07	positive limit switch source	65535	0	0	1	1		х		✓
3108h	0	V	UINT16	hm08	home switch source	65535	0	0	1	1		х		√
3109h	0	٧	INT32	hm09	position offset	2147483647	-2147483648	0	1	1		х		√
310Ah	0	٧	UINT16	hm10	(CiA 0x60B8) touch probe function	59	0	0	1	1		х		✓
310Bh	0	V	UINT16	hm11	(CiA 0x60B9) touch probe status				1	1		х	х	√
310Ch	0	٧	INT32	hm12	(CiA 0x60BA) touch probe 1 positive edge				1	1		х	х	✓
310Dh	0	٧	INT32	hm13	(CiA 0x60BB) touch probe 1 negative edge				1	1		х	х	✓
310Eh	0	V	UINT16	hm14	home mode source	4095	0	0	1	1		х		√
310Fh	0	٧	UINT16	hm15	excluded modes of operation for limit switch	32767	0	4	1	1		х		✓
3110h	0	٧	UINT16	hm16	excluded modes of operation for sw limits	32767	0	4	1	1		х		✓
3111h	0	٧	UINT8	hm17	limit switch handling	255	0	8	1	1		х		✓
3112h	0	٧	UINT16	hm18	limit switch speed lvl [%Nn]	2000	0	0	1	10	%	х		√
3113h	0	>	UINT32	hm19	maximal forward limit switch override	2147483647	0	0	1	1		x		✓
3114h	0	>	UINT32	hm20	maximal reverse limit switch override	2147483647	0	0	1	1		х		√
3115h	0	V	INT32	hm21	zero point distance				1	1		х	х	✓
3116h	0	V	INT16	hm22	zero point offset	32767	-32768	0	1	1		х		✓

hm: hom	ing par	ameter												
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
3117h	0	٧	INT16	hm23	homing options	1	0	0	1	1		х		√

is: invert	ter spec	ific pa	rameter											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
3500h	0	V	UINT16	is00	Uic mode	15	0	2	1	1		х		✓
3501h	0	V	UINT16	is01	Uic PT1-time	60000	63	5000	1	1000	ms	х		✓
3502h	0	V	UINT16	is02	Uic comp voltage limit	800	10	400	1	1	V	х		✓
3505h	0	V	UINT8	is05	deadtime index	255	0	0	1	1				✓
3506h	0	V	UINT8	is06	deadtime coeff.	255	0	0	1	1				✓
3507h	0	V	UINT16	is07	deadtime comp mode	3	0	0	1	1				✓
3508h	0	V	UINT16	is08	comp limit fact	20000	0	10000	1	100	%			✓
3509h	0	V	UINT16	is09	comp current fact	20000	0	10000	1	100	%			✓
350Ah	0	V	UINT16	is10	switching frequency	1600	200	800	1	100	kHz			✓
350Bh	0	V	UINT16	is11	max current [de28%]	8000	10	8000	1	10	%			✓
350Ch	0	V	UINT16	is12	display apparent current PT1	65535	0	4000	1	1000	ms	х		✓
350Dh	0	V	UINT16	is13	display torque PT1	65535	0	4000	1	1000	ms	х		✓
350Eh	0	V	UINT16	is14	overload protect mode	2	0	0	1	1		х		✓
350Fh	0	V	UINT8	is15	temp dep derating	1	0	0	1	1				✓
3510h	0	V	UINT16	is16	min. derating frequency	800	0	0	1	100	kHz	х		✓
3511h	0	>	UINT16	is17	temperature dependent OL2 off- set	2	0	0	1	1		х		✓
3512h	0	٧	UINT16	is18	UP error level	10000	500	2400	1	10	V			✓
3513h	0	V	UINT16	is19	UP reset level	10000	3000	3000	1	10	V			✓
3514h	0	V	UINT16	is20	OL2 prot. gain	45000	0	0	1	100		х		✓
3515h	0	V	UINT16	is21	OL2 safety fact	1000	500	950	1	10	%	х		✓
3516h	0	V	UINT8	is22	Basic Tp	11	0	0	1	1				✓
351Ah	0	V	INT16	is26	HS fan start temp	5000	-1	0	1	10	°C		l	9302, 9303, 9305, 9306, 9307, 9308
351Bh	0	V	INT16	is27	ID fan start temp	5000	-1	0	1	10	°C			9302, 9303, 9305,

is: invert	ter spec	ific pa	rameter											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
														9306, 9307, 9308
351Ch	0	>	INT16	is28	HS fan full speed temp	5000	0	0	1	10	°C			9302, 9303, 9305, 9306, 9307, 9308
351Dh	0	V	INT16	is29	ID fan full speed temp	5000	0	0	1	10	°C			9302, 9303, 9305, 9306, 9307, 9308
351Eh	0	V	UINT16	is30	braking transistor function	1	0	0	1	1				√
	0		UINT8		braking resistor model				1	1			Х	
	1		UINT32		brake resistor	200000	0	0	1	100	Ω			
	2		UINT32		average dissipated power				1	1	W		Х	
	3		UINT16		relative temperature wire				1	1	K	Х	Х	
351Fh	4	ST	UINT16	is31	relative temp. surface				1	1	K	Х	Х	
	5		UINT16		peak relative temp. wire	65535	0	0	1	1	K	Х		
	6		UINT16		peak relative temp. surface	65535	0	0	1	1	K	Х		
	7 8		UINT8 UINT32		error Rth*Cth < Tmin energy over braking resistor	2147483647	0	0	1	100	kWh	X	X	
	9		UINT32		power over braking resistor	2147403047			1	1	W	X	x	-
3522h	0	V	UINT16	is34	display power PT1	65535	0	4000	1	1000	ms	х		√
3523h	0	V	UINT16	is35	set current limit	9500	5000	8333	1	100	%			√
3524h	0	V	UINT8	is36	hard/soft. curr. reg. (HSR,SSR)	6	0	0	1	1				√
3525h	0	V	UINT16	is37	HSR/SSR current [OCLimit%]	1000	10	833	1	10	%			√
3526h	0	V	UINT32	is38	HSR/SSR active counter				1	1		х	х	√ √
3527h	0	V	UINT16	is39	display actual speed PT1	65535	0	4000	1	1000	ms	×		✓ ✓
352711 3528h	0	A	UINT8	is40	deadtime coeff. fsw0	64	64	64	1	1			x	
JUZUII	U	^	Olivio	1540	deadiiiie Coeii. 15wo	04	04	04	ı				^	

is: invert	er spec	ific par	ameter											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	164		UINT8			255	0	0	1	1				✓
3529h	0	۸	UINT8	is41	deadtime coeff, fsw1	64	64	64	1	1			Х	,
332911	29h 0 A 164	UINT8	1541	deadiline coeii. iswi	255	0	0	1	1				√	
352Ah	0	^	UINT8	is42	deadtime coeff, fsw2	64	64	64	1	1			Х	
SSZAII	164	А	UINT8	1542	deadiline coeii. iswz	255	0	0	1	1				√
352Bh	0	^	UINT8	is43	deadtime coeff, fsw3	64	64	64	1	1			Х	
SUZDII	164	А	UINT8	1543	deadime coen. ISW3	255	0	0	1	1				√

dd: drive	e detect	ion par	ameter											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
3600h	0	V	UINT16	dd00	rotor detection	255	0	0	1	1		х		✓
3601h	0	V	UINT16	dd01	SCL rotor detection	255	0	107	1	1		х		✓
3602h	0	V	UINT16	dd02	rotor detection current	3999	1	1000	1	10	%	х		✓
3603h	0	V	UINT16	dd03	cvv current ramping time	16000	0	500	1	1	ms	х		✓
3604h	0	V	UINT16	dd04	cvv waiting time	16000	0	3000	1	1	ms	х		✓
3607h	0	V	UINT16	dd07	rotor det. 1.order level	500	1	50	1	10	%	х		✓
3608h	0	V	UINT16	dd08	rot. det. inf. (1.order)				1	10	%	х	х	✓
3609h	0	V	UINT16	dd09	rotor det. 2.order level	500	1	200	1	10	%	х		✓
360Ah	0	V	UINT16	dd10	rot. det. inf. (2.order)				1	10	%	х	х	✓
3610h	0	V	UINT16	dd16	speed search mode	5	0	0	1	1				✓
3612h	0	V	UINT16	dd18	speed search current [In]	1999	0	500	1	10	%			✓
3615h	0	V	UINT16	dd21	hf injection mode	1	0	0	1	1				✓
3616h	0	V	UINT16	dd22	hf inj. frequency	20	5	10	1	10	kHz			✓
3617h	0	V	UINT16	dd23	hf inj. optimisation factor	100	19	20	1	10				✓
3618h	0	V	UINT16	dd24	hf inj. ampl. factor	1999	250	1000	1	10	%			✓
3619h	0	V	UINT16	dd25	hf inj. speed ctrl red. factor	1000	100	1000	1	10	%			✓
361Ah	0	V	INT16	dd26	hf inj. scan time	7	-1	-1	1	1				✓
361Bh	0	V	UINT16	dd27	hf inj. angle precontrol mode	1	0	0	1	1				✓
361Ch	0	V	INT16	dd28	hf inj. angle prec. factor [° @ InMot]	1800	-1800	0	1	10				✓
361Dh	0	V	UINT32	dd29	hf inj. dev. time	64000	0	0	1	1000	ms			✓
361Eh	0	V	INT16	dd30	hf inj. diff. rho current res. [°]				1	100		х	х	✓

fc: flux c	ontrol	oarame	ter											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
3700h	0	٧	UINT16	fc00	Umax regulation mode	18	0	1	1	1				✓
3701h	0	٧	UINT32	fc01	KP Umax [%Irated/%U]	10000000	0	0	1	1000				✓
3702h	0	V	UINT32	fc02	KI Umax [%Irated/%U s]	24000000	0	200000	1	1000				✓
3703h	0	٧	UINT16	fc03	Umax reference	1100	0	970	1	10	%			✓
3704h	0	V	UINT16	fc04	max. modulation grade	1100	0	1000	1	10	%	х		✓
3705h	0	V	UINT16	fc05	Umax reg. limit	4000	0	1000	1	10	%			✓
3710h	0	V	UINT16	fc16	ASM flux mode	31	0	7	1	1				✓
3711h	0	V	UINT16	fc17	ASM min. flux	1000	0	950	1	10	%			✓
3712h	0	V	UINT32	fc18	ASM KP flux [A/A]	2147483647	0	0	1	1000				✓
3713h	0	V	UINT32	fc19	ASM Tn flux	2147483647	0	0	1	1000	ms			✓
3714h	0	V	UINT16	fc20	ASM flux reg. limit	1000	0	1000	1	10	%			✓
	0		UINT8		min. current (SM)				1	1	-		Х	9305.
3720h	1	ST	UINT16	fc32	min. current mode	2	0	0	1	1				9306,
372011	2	31	UINT16	1632	min. current [%de80[1]]	10000	0	1000	1	10	%			9307,
	3		UINT16		ramping time	60000	0	100	1	1	ms			9308

	Sub-	_	misation p											EOA
Index	ldx	CAN	Type	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	D
3800h	0	V	UINT16	mo00	saturation mode	2047	0	0	1	1				✓
	0		UINT8		saturation coefficients				1	1			х	
	1		UINT32		Ld0 [H]	2139095039	0	0	1	1				
	2		UINT32		Ld1 [H]	2139095039	0	0	1	1				
	3		UINT32		Kd [1/A^2]	2139095039	0	0	1	1				
	4		UINT32		Kdq [1/A^2]	2139095039	0	0	1	1				
	5		UINT32		Lq0[H]	2139095039	0	0	1	1				
3801h	6	ST	UINT32	mo01	Lq1[H]	2139095039	0	0	1	1				√
360111	7	31	UINT32	moor	Kq [1/A^2]	2139095039	0	0	1	1				V
	8		UINT32		Kqd [1/A^2]	2139095039	0	0	1	1				
	9		UINT32		Psi0 [Vs]	2139095039	0	0	1	1				
	10		UINT32		Psi1 [Vs]	2139095039	0	0	1	1				
	11		UINT32		Kpd [1/A^2]	2139095039	0	0	1	1				
	12		UINT32		Kpq [1/A^2]	2139095039	0	0	1	1				
	13		UINT32		I0 [A]	2139095039	0	0	1	1				
	0		UINT8		saturation coef. dr-group				1	1			Х	
	1		UINT32		Ld0 [H]				1	1			Х	
	2		UINT32		Ld1 [H]				1	1			Х	
	3		UINT32		Kd [1/A^2]				1	1			Х	
	4		UINT32		Kdq [1/A^2]				1	1			Х	
	5		UINT32		Lq0[H]				1	1			Х	
3802h	6	ST	UINT32	mo02	Lq1[H]				1	1			Х	,
300211	7	31	UINT32	111002	Kq [1/A^2]				1	1			Х	✓
	8		UINT32		Kqd [1/A^2]				1	1			Х	
	9		UINT32		Psi0 [Vs]				1	1			Х	
	10		UINT32		Psi1 [Vs]				1	1			Х	
	11		UINT32		Kpd [1/A^2]				1	1			Х	
	12		UINT32		Kpq [1/A^2]				1	1			Х	
	13		UINT32		I0[A]				1	1			Х	
3803h	0	V	UINT16	mo03	fill table sel. (mo04mo10)	1	0	0	1	1				✓
3804h	0	Α	UINT8	mo04	Isq opt. array (Iq=f(M))	16	16	16	1	1			Х	

mo: mote	or conti	rol opti	misation p	oara										
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	116		UINT32			2139095039	0	0	1	1	Α			✓
3805h	0	Α	UINT8	mo05	Isd opt. array (Id=f(M))	16	16	16	1	1			Х	
300311	116	ζ.	UINT32	111003	isa opt. array (ia=i(ivi))	2139095039	0	0	1	1	Α			\
3806h	0	Α	UINT8	mo06	MLim array (M=f(Imax))	16	16	16	1	1			х	√
300011	116	^	UINT32	111000	WEITH array (WI-I(IIIIax))	2139095039	0	0	1	1	Nm			V
3808h	0	Α	UINT8	mo08	IgLim array (I=f(IdRef))	16	16	16	1	1			х	√
300011	116	ζ	UINT32	111000	iquin anay (i=i(idixei))	2139095039	0	0	1	1	Α			V
3809h	0	V	UINT32	mo09	Current Tab. x-axis [A]	2139095039	0	0	1	1	Α			✓
380Ah	0	V	UINT32	mo10	Torque Tab. x-axis [Nm]	2139095039	0	0	1	1	Nm			√
3810h	0	V	UINT8	mo16	cogging mode	1	0	0	1	1		х		✓
20445	0	^	UINT8	17		4	4	4	1	1			х	
3811h	14	Α	INT8	mo17	cogg. frequency factor	127	0	0	1	1		Х		✓
3812h	0	٨	UINT8	mo18	and magnitude [0/Mn]	4	4	4	1	1			Х	
301211	14	Α	INT16	111016	cogg. magnitude [%Mn]	1024	0	0	100	1024	%	Х		✓
3813h	0	Α	UINT8	mo19	ooga phooo [º]	4	4	4	1	1			х	
301311	14	A	INT16	111019	cogg. phase [°]	32767	-32768	0	10000	1820444		Х		√
3814h	0	>	INT32	mo20	cogg. fade out speed 100% [rpm]	819200000	0	819200	1	8192	rpm	х		>
3815h	0	V	INT32	mo21	cogg. fade out speed 0% [rpm]	819200000	0	8192000	1	8192	rpm	х		✓
3816h	0	V	INT16	mo22	cogging PT1-time	32767	0	4096	1	4096	ms	х		✓
3820h	0	V	INT16	mo32	ASM v/f offset	8192	-8192	0	100	16384	%	х		√

cu: cont	rol uic p	oarame	ter											
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
3911h	0	٧	UINT32	cu17	C Uic (uF)	2000000000	0	0	1	1				\
	0		UINT8		power off				1	1			Х	
	1		UINT16		power off mode	1	0	0	1	1	-			i .
	2		UINT16		DC voltage trigger level [ru63%]	2000	0	800	1	10	%			i .
	3		UINT16		DC voltage ref. [ru63%]	3000	0	880	1	10	%			i .
	4		UINT16		restart speed level [Nn%]	10000	0	150	1	10	%			i .
	5		UINT16		stopping speed level [Nn%]	10000	0	100	1	10	%			Ì
3920h	6	ST	UINT16	cu32	deactivation time	60000	0	100	1	100	S			✓
	7		UINT8		power off state	11	0	0	1	1		Х		i .
	8		UINT32		Kp Uic [In%/V]				1	10000			Х	Ī
	9		UINT32		Tn Uic				1	1000	ms		Х	i .
	10		INT16		torque limit Uic gen.	10000	-1	1000	1	10	%			1
	11		INT16		torque limit Uic mot.	10000	-1	100	1	10	%			ì
	12		UINT8		optimisation factor	100	19	40	1	10				1

Index	Sub-	CAN	Type	IDtxt	Nama	Unner limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA
index	ldx	CAN	Туре	IDtXt	Name	Upper limit	Lower limit	Default value	wuit.	DIV	Unit	PD	KO	D
3300h	0	V	UINT8	an00	AN1 interface selection	2	0	0	1	1		Х		✓
3301h	0	V	UINT8	an01	AN1 mean filter	15	0	4	1	4	ms	Х		✓
3302h	0	V	UINT16	an02	AN1 PT1 filter	65535	0	1000	1	1000	ms	Х		✓
3304h	0	V	UINT16	an04	AN1 zero point hysteresis	1000	0	82	100	4096	%	х		✓
3305h	0	V	INT16	an05	AN1 gain	20000	-20000	1000	1	1000		Х		✓
3306h	0	V	INT16	an06	AN1 offset X	4096	-4096	0	100	4096	%	Х		✓
3307h	0	V	INT16	an07	AN1 offset Y	4096	-4096	0	100	4096	%	х		✓
3308h	0	>	INT16	an08	AN1 neg limit	16384	-16384	-16384	100	4096	%	Х		✓
3309h	0	V	INT16	an09	AN1 pos limit	16384	-16384	16384	100	4096	%	х		✓
330Ah	0	V	UINT8	an10	AN2 interface selection	2	0	0	1	1		х		✓
330Bh	0	V	UINT8	an11	AN2 mean filter	15	0	4	1	4	ms	х		✓
330Ch	0	V	UINT16	an12	AN2 PT1 filter	65535	0	1000	1	1000	ms	х		✓
330Eh	0	V	UINT16	an14	AN2 zero point hysteresis	1000	0	82	100	4096	%	х		✓
330Fh	0	V	INT16	an15	AN2 gain	20000	-20000	1000	1	1000		х		✓
3310h	0	V	INT16	an16	AN2 offset X	4096	-4096	0	100	4096	%	х		✓
3311h	0	V	INT16	an17	AN2 offset Y	4096	-4096	0	100	4096	%	х		✓
3312h	0	V	INT16	an18	AN2 neg limit	16384	-16384	-16384	100	4096	%	х		✓
3313h	0	V	INT16	an19	AN2 pos limit	16384	-16384	16384	100	4096	%	х		✓
331Eh	0	V	UINT16	an30	REF and AUX function	65535	0	0	1	1		х		✓
331Fh	0	V	UINT32	an31	REF selector	16777215	0	0	1	1				✓
3320h	0	V	INT32	an32	REF norm fact	2147483647	-2147483647	0	1	10000		Х		✓
3321h	0	V	UINT8	an33	REF norm status				1	1		Х	х	✓
3322h	0	V	UINT32	an34	AUX selector	16777215	0	0	1	1				✓
3323h	0	V	INT32	an35	AUX norm fact	2147483647	-2147483647	0	1	10000		Х		✓
3324h	0	V	UINT8	an36	AUX norm status				1	1		Х	х	✓
3325h	0	V	UINT8	an37	ANOUT1 function	16	0	0	1	1				✓
3326h	0	V	UINT16	an38	ANOUT1 value	1000	0	0	1	10	%	х		✓
3327h	0	V	INT16	an39	ANOUT1 gain	20480	-20480	1024	1	1024		Х		√

an: analo	og inpu	t outpu	t paramete	er										
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
3328h	0	V	INT16	an40	ANOUT1 offset X	32767	-32767	0	100	32767	%	Х		✓
3329h	0	V	INT16	an41	ANOUT1 offset Y	32767	-32767	0	100	32767	%	Х		✓
333Ch	0	V	INT32	an60	PID Kp	2147483647	0	10000	1	10000		х		✓
333Dh	0	V	INT32	an61	PID Tn	2147483647	0	33000	1	1000	ms	х		✓
333Eh	0	V	INT32	an62	PID Kd	2147483647	0	0	1	10000		х		✓
333Fh	0	V	INT16	an63	PID positive limit	16384	0	4096	100	4096	%	х		✓
3340h	0	V	INT16	an64	PID negative limit	0	-16384	-4096	100	4096	%	х		✓
3341h	0	V	INT16	an65	PID reference offset	16384	-16384	0	100	4096	%	х		✓
3342h	0	V	UINT8	an66	PID reference source	2	0	0	1	1	%	Х		✓
3343h	0	V	INT16	an67	PID actual value setting	16384	-16384	0	100	4096	%	х		✓
3344h	0	V	UINT8	an68	PID actual value source	9	0	0	1	1	%	х		✓
3345h	0	V	UINT32	an69	PID internal reset condition	268435455	0	16351	1	1		х		✓
3346h	0	V	UINT16	an70	PID reset integral term input	65535	0	0	1	1		х		✓
3347h	0	V	UINT16	an71	PID deactivation input	65535	0	0	1	1		х		✓
3348h	0	٧	INT16	an72	PID preload value	16384	-16384	0	100	4096	%	х		✓
3349h	0	٧	UINT16	an73	PID fade out input	65535	0	0	1	1		х		✓
334Ah	0	V	INT32	an74	PID fade out time	2147483647	0	0	1	1000	s	х		✓

pr: com	profile	objects	}											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
1000h	0	V	UINT32		device type				1	1			х	✓
1001h	0	V	UINT8		error register				1	1		х	х	✓
1005h	0	V	UINT32		cob-ID sync message	128	128	128	1	1				✓
1009h	0	V	UINT32		Hardware Version				1	1			х	✓
100Ah	0	V	UINT32		Software Version				1	1			Х	√
100Ch	0	V	UINT16		guard time	65535	0	0	1	1				√
100Dh	0	V	UINT8		life time factor	255	0	0	1	1				√
	0		UINT8			1	1	1	1	1			Х	
1016h	11	Α	UINT32		consumer heartbeat time	8388607	0	0	1	1				✓
1017h	0	V	UINT16		producer heartbeat time	65535	0	0	1	1	ms			√
	0		UINT8		identity object				1	1			Х	
	1		UINT32		vendor ID				1	1			Х	
1018h	2	ST	UINT32		product code				1	1			Х	✓
	3		UINT32		revision number				1	1			Х	
	4		UINT32		serial number				1	1			Х	
1029h	0	Α	UINT8		error behavior	1	1	1	1	1			Х	√
102311	11		UINT8		CITOI DONAVIOI	2	0	1	1	1				V
	0		UINT8		1st RPDO communication parameter				1	1			х	
1400h	1	ST	UINT32		cob-ID	4294967295	1	513	1	1				✓
	2		UINT8		transmission type	255	0	254	1	1				
	0		UINT8		2nd RPDO communication parameter				1	1			х	
1401h	1	ST	UINT32		cob-ID	4294967295	1	769	1	1				✓
	2		UINT8		transmission type	255	0	254	1	1				
	0		UINT8		3rd RPDO communication parameter				1	1			x	
1402h	1	ST	UINT32		cob-ID	4294967295	1	1025	1	1				✓
	2		UINT8		transmission type	255	0	254	1	1				
1403h	0	ST	UINT8		4th RPDO communication parameter				1	1			х	✓
	1		UINT32		cob-ID	4294967295	1	1281	1	1				

Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	2		UINT8		transmission type	255	0	254	1	1				
	0		UINT8		1st receive PDO mapping	24	0	0	1	1				
	1	•	UINT32		1st Mapped Object	4294967295	0	0	1	1				
	2	•	UINT32		2nd Mapped Object	4294967295	0	0	1	1				
	3	•	UINT32		3rd Mapped Object	4294967295	0	0	1	1				
	4	•	UINT32		4th Mapped Object	4294967295	0	0	1	1				
	5	Ī	UINT32		5th Mapped Object	4294967295	0	0	1	1				
	6	Ī	UINT32		6th Mapped Object	4294967295	0	0	1	1				
	7	Ī	UINT32		7th Mapped Object	4294967295	0	0	1	1				
	8	Ī	UINT32		8th Mapped Object	4294967295	0	0	1	1				
	9		UINT32		9th Mapped Object	4294967295	0	0	1	1				
	10	Ī	UINT32		10th Mapped Object	4294967295	0	0	1	1				
	11		UINT32		11th Mapped Object	4294967295	0	0	1	1				
1600h	12	ST	UINT32		12th Mapped Object	4294967295	0	0	1	1				9300
	13		UINT32		13th Mapped Object	4294967295	0	0	1	1				3302
	14		UINT32		14th Mapped Object	4294967295	0	0	1	1				
	15		UINT32		15th Mapped Object	4294967295	0	0	1	1				
	16		UINT32		16th Mapped Object	4294967295	0	0	1	1				
	17		UINT32		17th Mapped Object	4294967295	0	0	1	1				
	18		UINT32		18th Mapped Object	4294967295	0	0	1	1				
	19		UINT32		19th Mapped Object	4294967295	0	0	1	1				
	20		UINT32		20th Mapped Object	4294967295	0	0	1	1				
	21		UINT32		21st Mapped Object	4294967295	0	0	1	1				
	22		UINT32		22nd Mapped Object	4294967295	0	0	1	1				
	23		UINT32		23rd Mapped Object	4294967295	0	0	1	1				
	24		UINT32		24th Mapped Object	4294967295	0	0	1	1				
	0		UINT8		1st receive PDO mapping	32	0	8	1	1				
	1		UINT32		1st Mapped Object	4294967295	0	688914464	1	1				
1600h	2	ST	UINT32		2nd Mapped Object	4294967295	0	688980000	1	1				9301
100011	3	01	UINT32		3rd Mapped Object	4294967295	0	689045536	1	1				9303
	4		UINT32		4th Mapped Object	4294967295	0	689111072	1	1				
	5		UINT32		5th Mapped Object	4294967295	0	689176608	1	1				1

pr: com	profile	objects												
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	6		UINT32		6th Mapped Object	4294967295	0	689242144	1	1				
	7		UINT32		7th Mapped Object	4294967295	0	689307680	1	1				
	8		UINT32		8th Mapped Object	4294967295	0	689373216	1	1				
	9		UINT32		9th Mapped Object	4294967295	0	0	1	1				
	10		UINT32		10th Mapped Object	4294967295	0	0	1	1			I	
	11		UINT32		11th Mapped Object	4294967295	0	0	1	1				
	12		UINT32		12th Mapped Object	4294967295	0	0	1	1				
	13		UINT32		13th Mapped Object	4294967295	0	0	1	1				
	14		UINT32		14th Mapped Object	4294967295	0	0	1	1				
	15		UINT32		15th Mapped Object	4294967295	0	0	1	1				
	16		UINT32		16th Mapped Object	4294967295	0	0	1	1			T	
	17		UINT32		17th Mapped Object	4294967295	0	0	1	1				
	18		UINT32		18th Mapped Object	4294967295	0	0	1	1				
	19		UINT32		19th Mapped Object	4294967295	0	0	1	1				
	20		UINT32		20th Mapped Object	4294967295	0	0	1	1				
	21		UINT32		21st Mapped Object	4294967295	0	0	1	1				
	22		UINT32		22nd Mapped Object	4294967295	0	0	1	1				
	23		UINT32		23rd Mapped Object	4294967295	0	0	1	1				
	24		UINT32		24th Mapped Object	4294967295	0	0	1	1				
	25		UINT32		25th Mapped Object	4294967295	0	0	1	1				
	26		UINT32		26th Mapped Object	4294967295	0	0	1	1				
	27		UINT32		27th Mapped Object	4294967295	0	0	1	1				
	28		UINT32		28th Mapped Object	4294967295	0	0	1	1				
	29		UINT32		29th Mapped Object	4294967295	0	0	1	1				
	30		UINT32		30th Mapped Object	4294967295	0	0	1	1				
	31		UINT32		31st Mapped Object	4294967295	0	0	1	1				
	32		UINT32		32nd Mapped Object	4294967295	0	0	1	1				
	0		UINT8		1st receive PDO mapping	32	0	0	1	1				9305,
1600h	1	ST	UINT32		1st Mapped Object	4294967295	0	0	1	1				9306,
100011	2	01	UINT32		2nd Mapped Object	4294967295	0	0	1	1				9307,
	3		UINT32		3rd Mapped Object	4294967295	0	0	1	1			L ⁷	9308

ndex	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EC
	4		UINT32		4th Mapped Object	4294967295	0	0	1	1				
	5		UINT32		5th Mapped Object	4294967295	0	0	1	1				
	6		UINT32		6th Mapped Object	4294967295	0	0	1	1				
	7		UINT32		7th Mapped Object	4294967295	0	0	1	1				
	8		UINT32		8th Mapped Object	4294967295	0	0	1	1				
	9		UINT32		9th Mapped Object	4294967295	0	0	1	1				
	10		UINT32		10th Mapped Object	4294967295	0	0	1	1				
	11		UINT32		11th Mapped Object	4294967295	0	0	1	1				
	12		UINT32		12th Mapped Object	4294967295	0	0	1	1				
	13	•	UINT32		13th Mapped Object	4294967295	0	0	1	1				
•	14	•	UINT32		14th Mapped Object	4294967295	0	0	1	1				
•	15	•	UINT32		15th Mapped Object	4294967295	0	0	1	1				
•	16	•	UINT32		16th Mapped Object	4294967295	0	0	1	1				
•	17	•	UINT32		17th Mapped Object	4294967295	0	0	1	1				
•	18	•	UINT32		18th Mapped Object	4294967295	0	0	1	1				
	19	•	UINT32		19th Mapped Object	4294967295	0	0	1	1				
	20	•	UINT32		20th Mapped Object	4294967295	0	0	1	1				
	21	•	UINT32		21st Mapped Object	4294967295	0	0	1	1				
•	22		UINT32		22nd Mapped Object	4294967295	0	0	1	1				1
	23	•	UINT32		23rd Mapped Object	4294967295	0	0	1	1				
•	24		UINT32		24th Mapped Object	4294967295	0	0	1	1				1
•	25		UINT32		25th Mapped Object	4294967295	0	0	1	1				1
•	26		UINT32		26th Mapped Object	4294967295	0	0	1	1				1
•	27	•	UINT32		27th Mapped Object	4294967295	0	0	1	1				
•	28	•	UINT32		28th Mapped Object	4294967295	0	0	1	1				
	29		UINT32		29th Mapped Object	4294967295	0	0	1	1				1
=	30	ŀ	UINT32		30th Mapped Object	4294967295	0	0	1	1				1
•	31	ŀ	UINT32		31st Mapped Object	4294967295	0	0	1	1				1
•	32	ŀ	UINT32		32nd Mapped Object	4294967295	0	0	1	1				1
	0		UINT8		2nd receive PDO mapping	8	0	0	1	1				T
601h	1	ST	UINT32		1st Mapped Object	4294967295	0	0	1	1				1

Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	3		UINT32		3rd Mapped Object	4294967295	0	0	1	1				
	4		UINT32		4th Mapped Object	4294967295	0	0	1	1				
	5		UINT32		5th Mapped Object	4294967295	0	0	1	1				
	6		UINT32		6th Mapped Object	4294967295	0	0	1	1				
	7		UINT32		7th Mapped Object	4294967295	0	0	1	1				
	8		UINT32		8th Mapped Object	4294967295	0	0	1	1				
	0		UINT8		3rd receive PDO mapping	8	0	0	1	1				
	1		UINT32		1st Mapped Object	4294967295	0	0	1	1				
	2		UINT32		2nd Mapped Object	4294967295	0	0	1	1				
	3		UINT32		3rd Mapped Object	4294967295	0	0	1	1				
1602h	4	ST	UINT32		4th Mapped Object	4294967295	0	0	1	1				✓
	5		UINT32		5th Mapped Object	4294967295	0	0	1	1				
	6		UINT32		6th Mapped Object	4294967295	0	0	1	1				
	7		UINT32		7th Mapped Object	4294967295	0	0	1	1				
	8		UINT32		8th Mapped Object	4294967295	0	0	1	1				
	0		UINT8		4th receive PDO mapping	8	0	0	1	1				
	1		UINT32		1st Mapped Object	4294967295	0	0	1	1				
	2		UINT32		2nd Mapped Object	4294967295	0	0	1	1				
	3		UINT32		3rd Mapped Object	4294967295	0	0	1	1				
1603h	4	ST	UINT32		4th Mapped Object	4294967295	0	0	1	1				✓
	5		UINT32		5th Mapped Object	4294967295	0	0	1	1				
	6		UINT32		6th Mapped Object	4294967295	0	0	1	1				
	7		UINT32		7th Mapped Object	4294967295	0	0	1	1				
	8		UINT32		8th Mapped Object	4294967295	0	0	1	1				
	0		UINT8		1st TPDO communication parameter				1	1			х	
	1		UINT32		cob-ID	4294967295	1	385	1	1				
1800h	2	ST	UINT8		transmission type	255	0	254	1	1				✓
	3		UINT16		inhibit time	65535	0	100	1	10	ms			
	4		UINT8		reserved				1	1			х	
	5		UINT16		event time	65535	0	0	1	1				1

Index	Sub- Idx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	0		UINT8		2nd TPDO communication parameter				1	1			х	
	1		UINT32		cob-ID	4294967295	1	641	1	1				
1801h	2	ST	UINT8		transmission type	255	0	254	1	1				√
	3		UINT16		inhibit time	65535	0	100	1	10	ms			
	4		UINT8		reserved				1	1			Х	
	5		UINT16		event time	65535	0	0	1	1				
	0		UINT8		3rd TPDO communication parameter				1	1			х	
	1		UINT32		cob-ID	4294967295	1	897	1	1				
1802h	2	ST	UINT8		transmission type	255	0	254	1	1				√
	3	•	UINT16		inhibit time	65535	0	100	1	10	ms			
	4		UINT8		reserved				1	1			Х	
	5		UINT16		event time	65535	0	0	1	1				
	0		UINT8		4th TPDO communication parameter				1	1			х	
	1		UINT32		cob-ID	4294967295	1	1153	1	1				
1803h	2	ST	UINT8		transmission type	255	0	254	1	1				√
	3		UINT16		inhibit time	65535	0	100	1	10	ms			
	4		UINT8		reserved				1	1			Х	
	5		UINT16		event time	65535	0	0	1	1				
	0		UINT8		1st transmit PDO mapping	24	0	0	1	1				
	1		UINT32		1st Mapped Object	4294967295	0	0	1	1				
	2		UINT32		2nd Mapped Object	4294967295	0	0	1	1				
	3		UINT32		3rd Mapped Object	4294967295	0	0	1	1				
	4		UINT32		4th Mapped Object	4294967295	0	0	1	1				
1 A O O b	5	ST	UINT32		5th Mapped Object	4294967295	0	0	1	1				9300
1A00h 6	6	31	UINT32		6th Mapped Object	4294967295	0	0	1	1			-	9302
	7		UINT32		7th Mapped Object	4294967295	0	0	1	1				
	8		UINT32		8th Mapped Object	4294967295	0	0	1	1			l	
	9		UINT32		9th Mapped Object	4294967295	0	0	1	1				
	10		UINT32		10th Mapped Object	4294967295	0	0	1	1				
	11		UINT32		11th Mapped Object	4294967295	0	0	1	1				

pr: com	profile	objects	i											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	12		UINT32		12th Mapped Object	4294967295	0	0	1	1				
	13		UINT32		13th Mapped Object	4294967295	0	0	1	1				
	14		UINT32		14th Mapped Object	4294967295	0	0	1	1				
	15		UINT32		15th Mapped Object	4294967295	0	0	1	1				
	16		UINT32		16th Mapped Object	4294967295	0	0	1	1				
	17		UINT32		17th Mapped Object	4294967295	0	0	1	1				
	18		UINT32		18th Mapped Object	4294967295	0	0	1	1				
	19		UINT32		19th Mapped Object	4294967295	0	0	1	1				
	20		UINT32		20th Mapped Object	4294967295	0	0	1	1				
	21		UINT32		21st Mapped Object	4294967295	0	0	1	1				
	22		UINT32		22nd Mapped Object	4294967295	0	0	1	1				
	23		UINT32		23rd Mapped Object	4294967295	0	0	1	1				
	24		UINT32		24th Mapped Object	4294967295	0	0	1	1				
	0		UINT8		1st transmit PDO mapping	32	0	8	1	1				
	1		UINT32		1st Mapped Object	4294967295	0	688914464	1	1			1	
	2		UINT32		2nd Mapped Object	4294967295	0	688980000	1	1				
	3		UINT32		3rd Mapped Object	4294967295	0	689045536	1	1				
	4		UINT32		4th Mapped Object	4294967295	0	689111072	1	1				
	5		UINT32		5th Mapped Object	4294967295	0	689176608	1	1				
	6		UINT32		6th Mapped Object	4294967295	0	689242144	1	1				
	7		UINT32		7th Mapped Object	4294967295	0	689307680	1	1				
1A00h	8	ST	UINT32		8th Mapped Object	4294967295	0	689373216	1	1				9301,
TAUUN	9	51	UINT32		9th Mapped Object	4294967295	0	0	1	1				9303
	10		UINT32		10th Mapped Object	4294967295	0	0	1	1				
	11		UINT32		11th Mapped Object	4294967295	0	0	1	1				
	12		UINT32		12th Mapped Object	4294967295	0	0	1	1				
	13		UINT32		13th Mapped Object	4294967295	0	0	1	1				
	14		UINT32		14th Mapped Object	4294967295	0	0	1	1				
	15		UINT32		15th Mapped Object	4294967295	0	0	1	1				
	16		UINT32		16th Mapped Object	4294967295	0	0	1	1				
	17		UINT32		17th Mapped Object	4294967295	0	0	1	1				<u> </u>

Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	18		UINT32		18th Mapped Object	4294967295	0	0	1	1				
	19		UINT32		19th Mapped Object	4294967295	0	0	1	1				
	20		UINT32		20th Mapped Object	4294967295	0	0	1	1				
	21		UINT32		21st Mapped Object	4294967295	0	0	1	1				
	22		UINT32		22nd Mapped Object	4294967295	0	0	1	1				1
	23		UINT32		23rd Mapped Object	4294967295	0	0	1	1				1
	24		UINT32		24th Mapped Object	4294967295	0	0	1	1				1
	25		UINT32		25th Mapped Object	4294967295	0	0	1	1				
	26		UINT32		26th Mapped Object	4294967295	0	0	1	1				1
	27		UINT32		27th Mapped Object	4294967295	0	0	1	1				1
	28		UINT32		28th Mapped Object	4294967295	0	0	1	1				1
	29		UINT32		29th Mapped Object	4294967295	0	0	1	1				1
	30		UINT32		30th Mapped Object	4294967295	0	0	1	1				1
	31		UINT32		31st Mapped Object	4294967295	0	0	1	1				1
	32		UINT32		32nd Mapped Object	4294967295	0	0	1	1				1
	0		UINT8		1st transmit PDO mapping	32	0	0	1	1				
	1		UINT32		1st Mapped Object	4294967295	0	0	1	1				1
	2		UINT32		2nd Mapped Object	4294967295	0	0	1	1				1
	3		UINT32		3rd Mapped Object	4294967295	0	0	1	1				1
	4		UINT32		4th Mapped Object	4294967295	0	0	1	1				
	5		UINT32		5th Mapped Object	4294967295	0	0	1	1				1
	6		UINT32		6th Mapped Object	4294967295	0	0	1	1				1
	7		UINT32		7th Mapped Object	4294967295	0	0	1	1				9305,
1A00h	8	ST	UINT32		8th Mapped Object	4294967295	0	0	1	1				9306, 9307,
	9		UINT32		9th Mapped Object	4294967295	0	0	1	1				9308
	10		UINT32		10th Mapped Object	4294967295	0	0	1	1				
	11		UINT32		11th Mapped Object	4294967295	0	0	1	1				
	12		UINT32		12th Mapped Object	4294967295	0	0	1	1				
	13		UINT32		13th Mapped Object	4294967295	0	0	1	1				l
	14		UINT32		14th Mapped Object	4294967295	0	0	1	1				l
	15		UINT32		15th Mapped Object	4294967295	0	0	1	1				İ
	16		UINT32		16th Mapped Object	4294967295	0	0	1	1				ĺ

Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	17		UINT32		17th Mapped Object	4294967295	0	0	1	1				
	18		UINT32		18th Mapped Object	4294967295	0	0	1	1				
	19		UINT32		19th Mapped Object	4294967295	0	0	1	1				
	20		UINT32		20th Mapped Object	4294967295	0	0	1	1				
	21		UINT32		21st Mapped Object	4294967295	0	0	1	1				
	22		UINT32		22nd Mapped Object	4294967295	0	0	1	1				
	23		UINT32		23rd Mapped Object	4294967295	0	0	1	1				
	24		UINT32		24th Mapped Object	4294967295	0	0	1	1				
	25		UINT32		25th Mapped Object	4294967295	0	0	1	1				
	26		UINT32		26th Mapped Object	4294967295	0	0	1	1				
	27		UINT32		27th Mapped Object	4294967295	0	0	1	1				
	28		UINT32		28th Mapped Object	4294967295	0	0	1	1				
	29		UINT32		29th Mapped Object	4294967295	0	0	1	1				
	30		UINT32		30th Mapped Object	4294967295	0	0	1	1				
	31		UINT32		31st Mapped Object	4294967295	0	0	1	1				
	32		UINT32		32nd Mapped Object	4294967295	0	0	1	1				
	0		UINT8		2nd transmit PDO mapping	8	0	0	1	1				
	1		UINT32		1st Mapped Object	4294967295	0	0	1	1				
	2		UINT32		2nd Mapped Object	4294967295	0	0	1	1				
	3		UINT32		3rd Mapped Object	4294967295	0	0	1	1				
1A01h	4	ST	UINT32		4th Mapped Object	4294967295	0	0	1	1				✓
	5		UINT32		5th Mapped Object	4294967295	0	0	1	1				
	6		UINT32		6th Mapped Object	4294967295	0	0	1	1				
	7		UINT32		7th Mapped Object	4294967295	0	0	1	1				
	8		UINT32		8th Mapped Object	4294967295	0	0	1	1				
	0		UINT8		3rd transmit PDO mapping	8	0	0	1	1				
	1		UINT32		1st Mapped Object	4294967295	0	0	1	1				
4.4.001-	2	C-T	UINT32		2nd Mapped Object	4294967295	0	0	1	1				
1A02h	3	ST	UINT32		3rd Mapped Object	4294967295	0	0	1	1				√
	4		UINT32		4th Mapped Object	4294967295	0	0	1	1				
	5		UINT32		5th Mapped Object	4294967295	0	0	1	1				

Index	Sub- Idx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	6		UINT32		6th Mapped Object	4294967295	0	0	1	1				
	7		UINT32		7th Mapped Object	4294967295	0	0	1	1				
	8		UINT32		8th Mapped Object	4294967295	0	0	1	1				
	0		UINT8		4th transmit PDO mapping	8	0	0	1	1				
	1		UINT32		1st Mapped Object	4294967295	0	0	1	1				
	2		UINT32		2nd Mapped Object	4294967295	0	0	1	1				
	3		UINT32		3rd Mapped Object	4294967295	0	0	1	1				
1A03h	4	ST	UINT32		4th Mapped Object	4294967295	0	0	1	1				✓
	5		UINT32		5th Mapped Object	4294967295	0	0	1	1				
	6		UINT32		6th Mapped Object	4294967295	0	0	1	1				
	7		UINT32		7th Mapped Object	4294967295	0	0	1	1				
	8		UINT32		8th Mapped Object	4294967295	0	0	1	1				
4.C00h	0	^	UINT8		Sync Manager Communication	4	4	4	1	1			Х	,
1C00h	14	Α	UINT8		Туре				1	1			Х	✓
4040	0	•	UINT8		0.000	1	1	1	1	1			Х	9300
1C12h	11	Α	UINT16		sync manager 2 PDO assign				1	1			Х	9302
	0		UINT8			2	2	2	1	1			Х	9301
1C12h	12	Α	UINT16		sync manager 2 PDO assign				1	1			x	9303 9305 9306 9307 9308
40401	0		UINT8		0.000	1	1	1	1	1			Х	9300
1C13h	11	Α	UINT16		sync manager 3 PDO assign				1	1			Х	9302
	0		UINT8			2	2	2	1	1			Х	9301
1C13h	12	Α	UINT16		sync manager 3 PDO assign				1	1			х	9303 9305 9306 9307 9308
	0		UINT8		Output sync manager para				1	1			Х	
1C32h	1	ST	UINT16		Sync mode				1	1			Х	✓
	2		UINT32		Cycle Time				1	1000	μs		Х	

Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EO D
	3		UINT32		Shift Time				1	1			х	
	4		UINT16		Sync modes supported				1	1			х	
	5		UINT32		Minimum Cycle Time				1	1000	μs		х	1
	6		UINT32		Calc and Copy Time				1	1000	μs		х	
	7		UINT32		Minimum Delay Time				1	1000	μs		х	
	8		UINT16		Get Cycle Time				1	1			х	
	9		UINT32		Delay Time				1	1000	μs		х	
	10		UINT32		Sync0 Cycle Time				1	1000	μs		х	
	11		UINT16		SM-Event Missed				1	1			х	
	12		UINT16		Cycle Time Too Small				1	1			х	
	13		UINT16		Shift Time Too Short				1	1			х	
	14		UINT16		RxPDO Toggle Failed				1	1			х	
	15		UINT32		Minimum Cycle Distance				1	1	μs		х	
	16		UINT32		Maximum Cycle Distance				1	1	μs		х	
	17		UINT32		Minimum SM SYNC Distance				1	1	μs		х	
	18		UINT32		Maximum SM SYNC Distance				1	1	μs		х	
	19		UINT8		Reserved				1	1			х	
	20		UINT8		Reserved				1	1			х	
	21		UINT8		Reserved				1	1			Х	
	22		UINT8		Reserved				1	1			х	
	23		UINT8		Reserved				1	1			х	
	24		UINT8		Reserved				1	1			х	
	25		UINT8		Reserved				1	1			Х	
	26		UINT8		Reserved				1	1			х	
	27		UINT8		Reserved				1	1			х	
	28		UINT8		Reserved				1	1			Х	
	29		UINT8		Reserved				1	1			х	
	30		UINT8		Reserved				1	1			х	Ì
	31		UINT8		Reserved				1	1			х	
	32		UINT8		Sync Error				1	1		Х	х	
1C33h	0	ST	UINT8		Input sync manager para				1	1			х	

Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	1		UINT16		Sync mode				1	1			х	
	2		UINT32		Cycle Time				1	1000	μs		Х	1
	3		UINT32		Shift Time				1	1			Х	1
	4		UINT16		Sync modes supported				1	1			Х	1
	5		UINT32		Minimum Cycle Time				1	1000	μs		Х	1
	6		UINT32		Calc and Copy Time				1	1000	μs		Х	1
	7		UINT32		Minimum Delay Time				1	1000	μs		Х	1
	8		UINT16		Get Cycle Time				1	1			Х	1
	9		UINT32		Delay Time				1	1000	μs		Х	
	10		UINT32		Sync0 Cycle Time				1	1000	μs		Х	1
	11		UINT16		SM-Event Missed				1	1			Х	
	12		UINT16		Cycle Time Too Small				1	1			Х	1
	13		UINT16		Shift Time Too Short				1	1			Х	1
	14		UINT16		Reserved				1	1			Х	1
	15		UINT8		Reserved				1	1			Х	1
	16		UINT8		Reserved				1	1			Х	١.
	17		UINT8		Reserved				1	1			Х	✓
	18		UINT8		Reserved				1	1			Х	1
	19		UINT8		Reserved				1	1			Х	1
	20		UINT8		Reserved				1	1			Х	1
	21		UINT8		Reserved				1	1			Х	1
	22		UINT8		Reserved				1	1			Х	
	23		UINT8		Reserved				1	1			Х	
	24		UINT8		Reserved				1	1			Х	1
	25		UINT8		Reserved				1	1			Х	
	26		UINT8		Reserved				1	1			Х	1
	27		UINT8		Reserved				1	1			Х	
	28		UINT8		Reserved				1	1			Х	
	29		UINT8		Reserved				1	1			Х	ĺ
	30		UINT8		Reserved				1	1			Х	ĺ
	31		UINT8		Reserved				1	1			Х	1
	32		UINT8		Sync Error				1	1		Х	Х	l

pr: com	profile	objects	i											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
603Fh	0	V	UINT16		error code				1	1		х	х	✓
6040h	0	V	UINT16		controlword	65535	0	0	1	1		х		✓
6041h	0	V	UINT16		statusword				1	1		х	х	✓
6042h	0	V	INT16		vl target velocity	32767	-32767	0	1	1	rpm	х		✓
6043h	0	V	INT16		vl velocity demand				1	1	rpm	х	х	✓
6044h	0	V	INT16		vl velocity actual value				1	1	rpm	х	х	✓
605Ah	0	V	INT16		quick stop option code	0	-6	0	1	1				✓
605Bh	0	V	INT16		shutdown option code	1	-2	0	1	1				✓
605Ch	0	V	INT16		disable operation option code	1	-2	1	1	1				✓
605Eh	0	V	INT16		fault reaction option code	0	-1	-1	1	1				✓
6060h	0	V	INT8		modes of operation	10	-2	2	1	1		х		✓
6061h	0	V	INT8		modes of operation display				1	1		х	х	✓
6062h	0	V	INT32		position demand value				1	1		х	х	✓
6064h	0	V	INT32		position actual value				1	1		х	х	✓
6065h	0	V	UINT32		following error window	2147483647	0	5000	1	1				✓
6066h	0	V	UINT16		following error time out	65535	0	0	1	1		х		✓
6067h	0	V	UINT32		positioning window	2147483647	0	5000	1	1				✓
6068h	0	V	UINT16		positioning window time	65535	0	0	1	1		х		✓
606Bh	0	V	INT32		velocity demand value				1	1		х	х	✓
606Ch	0	V	INT32		velocity actual value				1	1		х	х	✓
6071h	0	V	INT16		target torque	32767	-32767	0	1	1		х		✓
6072h	0	V	UINT16		max torque	10000	0	2000	1	1		х		✓
6077h	0	V	INT16		torque actual value				1	1		х	х	✓
607Ah	0	V	INT32		target position	2147483647	-2147483648	0	1	1		х		✓
607Bh	0	А	UINT8		position range limit	2	2	2	1	1			Х	,
007 611	12	^	INT32		position range innit	2147483647	-2147483648	-2147483648	1	1		Х		✓
607Ch	0	V	INT32		home offset	2147483647	-2147483648	0	1	1		х		✓
607Dh	0	Α	UINT8		software position limit	2	2	2	1	1			х	√
	12		INT32			2147483647	-2147483648	-2147483648	1	1		Х		

594

pr: com	profile o	objects	1											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
607Fh	0	V	UINT32		max profile velocity	128000	0	1000	1	1		Х		✓
6080h	0	V	UINT32		max. motor speed	128000	0	128000	1	1		Х		✓
6081h	0	V	UINT32		profile velocity	128000	0	0	1	1		х		✓
6082h	0	V	UINT32		end velocity	128000	0	0	1	1		х		✓
6098h	0	V	INT8		homing method	35	1	35	1	1		х		✓
6099h	0	Α	UINT8		homing speed	2	2	2	1	1			Х	✓
009911	12	A	UINT32		morning speed	2147483647	0	800	1	1		Х		V
609Ah	0	V	INT32		homing acceleration	1747626666	1	2000	1	1		Х		✓
60B1h	0	V	INT32		velocity offset	2147483647	-2147483647	0	1	1		х		✓
60B2h	0	V	INT16		torque offset	32767	-32767	0	1	1		х		✓
60B8h	0	V	UINT16		touch probe function	59	0	0	1	1		Х		✓
60B9h	0	V	UINT16		touch probe status				1	1		х	х	✓
60BAh	0	V	INT32		touch probe pos1 pos value				1	1		х	х	✓
60BBh	0	V	INT32		touch probe pos1 neg value				1	1		х	х	✓
	0		UINT8		interpolation time period				1	1			Х	
60C2h	1	ST	UINT8		interpolation time value	127	0	0	1	1				✓
	2		INT8		interpolation time index	63	-128	-6	1	1				
60D0h	0	Α	UINT8		touch probe source	1	1	1	1	1			х	√
002011	11	,,	UINT16		todon probe codice	5	1	1	1	1				ľ
60E0h	0	V	INT16		positive torque limit value	10000	0	5000	1	1		Х		✓
60E1h	0	V	INT16		negative torque limit value	10000	-1	-1	1	1		х		✓
60F4h	0	>	INT32		following error actual value				1	1		х	х	✓
60FFh	0	V	INT32	_	target velocity	2147483647	-2147483647	0	1	1		Х		✓
6502h	0	V	UINT32		supported drive modes				1	1		х	х	✓

fs: safety	y modu	le para	meters											
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
6600h	0	>	UINT32		Time Unit				1	1			Х	9301, 9303, 9305, 9306, 9307, 9308
6601h	0	>	UINT32		Position unit				1	1			х	9301, 9303
6602h	0	V	UINT32		Velocity unit				1	1			х	9301, 9303, 9305, 9306, 9307, 9308
6603h	0	V	UINT32		Acceleration Unit				1	1			х	9301, 9303, 9305, 9306, 9307, 9308
6611h	0	٧	INT32		Safe position actual value 32Bit				1	1			х	9301, 9303
6613h	0	V	INT32		Safe velocity actual value 32Bit				1	8192	rpm		х	9301, 9303, 9305, 9306, 9307, 9308
	0		UINT8			8	8	8	1	1			Х	9301,
6620h	18	Α	UINT8		Safe Controlword				1	1			x	9303, 9305, 9306, 9307, 9308
	0		UINT8			8	8	8	1	1			х	9301,
6621h	18	Α	UINT8		Safe Statusword				1	1			х	9303, 9305,

596

fs: safety	y modu	le para	meters											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	U
														9306, 9307, 9308
6630h	0	>	UINT8		Restart_Ack (support)				1	1			х	9301, 9303, 9305, 9306, 9307, 9308
6640h	0	V	UINT8		STO support				1	1			х	9301, 9303, 9305, 9306, 9307, 9308
6641h	0	V	UINT8		STO Restart_Ack_behaviour				1	1			х	9301, 9303, 9305, 9306, 9307, 9308
	0		UINT8			8	8	8	1	1			х	9301,
6650h	18	Α	UINT8		SS1 support				1	1			x	9303, 9305, 9306, 9307, 9308
	0		UINT8			8	8	8	1	1			х	9301,
6651h	18	Α	UINT32		t_SS1 (SS1C)	ŀ			1	1	ms		x	9303, 9305, 9306, 9307, 9308
	0		UINT8			8	8	8	1	1			х	
6656h	18	Α	UINT32		a_ss1 32Bit				1	1			х	9303, 9305, 9306,

fs: safet	y modu	le paraı	meters											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
														9307,
	0		UINT8			1	1	1	1	1			Х	9308 9301,
	0		Olivio			'	'	'	'	'			^	9303,
6660h	11	Α	UINT8		SBC support				1	1			x	9305, 9306, 9307, 9308
CCCOL	0	^	UINT8		COC	8	8	8	1	1			Х	9301,
6668h	18	Α	UINT8		SOS support				1	1			Х	9303
666Ah	0	Α	UINT8		s_Zero_SOS 32Bit	8	8	8	1	1			Х	9301,
OOOAII	18	А	UINT32		S_Zei0_3O3 32Bit				1	1			Х	9303
6670h	0	Α	UINT8		SS2 support	8	8	8	1	1			Х	9301,
007011	18		UINT8		OOZ Support				1	1			Х	9303
6671h	0	Α	UINT8		t_SS2 (SS2C)	8	8	8	1	1			Х	9301,
007 111	18		UINT32		(502 (6020)				1	1	ms		Х	9303
6674h	0	Α	UINT8		a_ss2 32Bit	8	8	8	1	1			Х	9301,
	18		UINT32						1	8192			Х	9303
6677h	0	Α	UINT8		Error Reaction SS2	8	8	8	1	1			Х	9301,
	18		UINT32						1	1			Х	9303
	0		UINT8			8	8	8	1	1			Х	9301, 9303,
6690h	18	Α	UINT8		SLS support				1	1			х	9305, 9305, 9306, 9307, 9308
	0		UINT8			8	8	8	1	1			Х	9301,
6693h	18	Α	UINT32		n_SLS_32_Bit				1	8192	rpm		x	9303, 9305, 9306, 9307, 9308
	0		UINT8			8	8	8	1	1			х	9301,
6698h	18	Α	UINT32		Error Reaction SLS				1	1			х	9303, 9305,

Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
														9306 9307 9308
66A0h	0	Α	UINT8		SLP support	8	8	8	1	1			х	9301,
bbAun	18	А	UINT8		SLP support				1	1			Х	9303
66A2h	0	Α	UINT8		s_UL_SLP_32Bit	8	8	8	1	1			Х	9301,
UUAZII	18	^	INT32		S_UL_ULI _UZDI(1	1			Х	9303
66A4h	0	Α	UINT8		s_LL_SLP_32Bit	8	8	8	1	1			Х	9301,
00/411	18		INT32		S_EE_OEI _OZDIC				1	1			Х	9303
66A5h	0	Α	UINT8		Error Reaction SLP	8	8	8	1	1			Х	9301,
00/1011	18	, ,	UINT32		End Readion de				1	1			Х	9303
	0		UINT8			8	8	8	1	1			Х	9301,
66A8h	18	Α	UINT8		SMS support				1	1			х	9303, 9305, 9306, 9307, 9308
	0		UINT8			8	8	8	1	1			Х	9301,
66AAh	18	Α	UINT32		n_pos_max_SMS_32Bit				1	8192	rpm		х	9303, 9305, 9306, 9307, 9308
	0		UINT8			8	8	8	1	1			Х	9301,
66ACh	18	Α	UINT32		n_neg_max_SMS_32Bit				1	8192	rpm		х	9303, 9305, 9306, 9307, 9308
	0		UINT8			8	8	8	1	1			Х	9301,
66ADh	18	Α	UINT32		Error Reaction SMS				1	1			х	9303, 9305, 9306, 9307, 9308
66B8h	0	Α	UINT8		SLI support	8	8	8	1	1			х	9301,

fs: safet	y modu	le para	meters											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	18		UINT8						1	1			Х	9303
COD AL	0	•	UINT8		- III OI I 00 D'I	8	8	8	1	1			Х	9301,
66BAh	18	Α	INT32		s_UL_SLI_32 Bit				1	1			Х	9303
66BCh	0	۸	UINT8		o 11 C1122 Dit	8	8	8	1	1			Х	9301,
OODCII	18	Α	INT32		s_LL_SLI 32 Bit				1	1			Х	9303
66BDh	0	Α	UINT8		Error Reaction SLI	8	8	8	1	1			Х	9301,
OOBDII	18	ζ.	UINT32		LITOT REACTION SET				1	1			Х	9303
66D0h	0	<	UINT8		SDIp support				1	1			х	9301, 9303
66D1h	0	٧	UINT8		SDIn support				1	1			х	9301, 9303
66D3h	0	٧	UINT32		s_Zero_SDI_32Bit				1	1			х	9301, 9303
	0		UINT8			8	8	8	1	1			Х	9301,
66E0h	18	Α	UINT8		SSM support				1	1			x	9303, 9305, 9306, 9307, 9308
	0		UINT8			8	8	8	1	1			Х	9301,
66E2h	18	Α	INT32		n_UL_SSM_32Bit				1	8192	rpm		x	9303, 9305, 9306, 9307, 9308
	0		UINT8			8	8	8	1	1			Х	9301,
66E4h	18	Α	INT32		n_LL_SSM_32Bit				1	8192	rpm		x	9303, 9305, 9306, 9307, 9308
	0		UINT8		FSoE Slave frame elements				1	1		Х	Х	9301.
Food	1	C.T.	UINT8		FSoE Command				1	1		х	Х	9303,
E600h	2	ST	UINT16		FSoE Connection ID				1	1		х	Х	9305,
	3		UINT16		FSoE CRC0				1	1		Х	Х	9306,

fs: safety	y modu	le parai	meters											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	4		UINT16		FSoE CRC1				1	1		х	Х	9307,
	5		UINT16		FSoE CRC2				1	1		Х	Х	9308
	6		UINT16		FSoE CRC3				1	1		Х	Х	
	0		UINT8		FSoE SafeInputs (SafetyMod- ule->Master)				1	1		х	х	9301,
	1		UINT16		FSoE safe input data 1				1	1		Х	Х	9303,
E601h	2	ST	UINT16		FSoE safe input data 2				1	1		Х	Х	9305,
	3		UINT16		FSoE safe input data 3				1	1		Х	Х	9306, 9307,
	4		UINT16		FSoE safe input data 4				1	1		Х	Х	9308
	5		UINT16		FSoE safe input data 5				1	1		Х	Х	
	0		UINT8		FSoE Master frame elements				1	1		Х	Х	
	1		UINT8		FSoE Command				1	1		Х	Х	9301,
	2		UINT16		FSoE Connection ID				1	1		Х	Х	9303,
E700h	3	ST	UINT16		FSoE CRC0				1	1		Х	Х	9305, 9306,
	4		UINT16		FSoE CRC1				1	1		Х	Х	9307,
	5		UINT16		FSoE CRC2				1	1		Х	Х	9308
	6		UINT16		FSoE CRC3				1	1		Х	Х	
	0		UINT8		FSoE SafeOutputs				1	1		Х	Х	9301,
	1		UINT16		FSoE safe output data 1				1	1		Х	Х	9301,
E701h	2	ST	UINT16		FSoE safe output data 2				1	1		Х	Х	9305,
E701h	3	51	UINT16		FSoE safe output data 3				1	1		Х	Х	9306,
	4		UINT16		FSoE safe output data 4				1	1		Х	Х	9307,
	5		UINT16		FSoE safe output data 5				1	1		Х	Х	9308
	0		UINT8		Safety Device Info				1	1			Х	9301,
	1		UINT32		Combivis CRC				1	1			Х	9303,
E800h	2	ST	UINT16		Parameter main version				1	1			Х	9305, 9306,
	3		UINT16		Parameter sub version				1	1			Х	9306,
	4		UINT8		FSoE Data length				1	1			Х	9308
	0		UINT8		Safety Receive PDO mapping (Control ->Drive)				1	1			х	9301, 9303,
E801h	1	ST	UINT8		1. Mapping				1	1			Х	9305,
	2		UINT8		2. Mapping				1	1			Х	9306,

fs: safety	y modu	le para	meters											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	3		UINT8		3. Mapping				1	1			Х	9307,
	4		UINT8		4. Mapping				1	1			Х	9308
	5		UINT8		5. Mapping				1	1			Х	
	0		UINT8		Safety Transmit PDO mapping (Drive -> Control)				1	1			х	9301,
	1		UINT8		1. Mapping				1	1			Х	9303,
E802h	2	ST	UINT8		2. Mapping				1	1			Х	9305,
	3		UINT8		3. Mapping				1	1			Х	9306, 9307,
	4		UINT8		4. Mapping				1	1			Х	9308
	5		UINT8		5. Mapping				1	1			Х	
	0		UINT8		Safety Device unit configuration				1	1			Х	9301,
	1		UINT8		Position unit				1	1			Х	9303,
E803h	2	ST	UINT8		Velocity unit				1	1			х	9305, 9306, 9307, 9308
	0		UINT8			3	3	3	1	1			Х	9301,
E80Fh	13	А	UINT32		FSoE Safetymodule PD init	4294967295	0	0	1	1				9303, 9305, 9306, 9307, 9308
	0		UINT8		FSoE Connection Communication parameter				1	1			х	
	1		UINT16		Version				1	1			Х	
	2		UINT16		Safety Slave Address				1	1			Х	9301, 9303,
	3		UINT16		FSoE ConnectionID				1	1			Х	9305, 9305.
E901h	4	ST	UINT16		Watchdog Time				1	1			Х	9306,
	5		UINT32		Unique Device ID				1	1			Х	9307,
	6		UINT16		Connection Type				1	1			Х	9308
	7		UINT16		Com Parameter Length				1	1			Х	
	8		UINT16		Appl Parameter Length				1	1			х	
F980h	0	ST	UINT8		Device SafetyAddress				1	1			Х	9301,
Laonu	1	31	UINT16		FSoE Address				1	1			Х	9303,

fs:	safety	/ modu	le para	meters											
lı	ndex	Sub- Idx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
															9305,
															9306,
															9307,
															9308

cm: cust	tomer n	node												
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
3B17h	0	V	UINT16	cm23	min limit for motor poti	10000	0	0	1	100	%	х		✓
3B18h	0	V	UINT16	cm24	max limit for motor poti	10000	0	10000	1	100	%	Х		✓
3B19h	0	V	UINT16	cm25	min limit rev motor poti	10000	0	0	1	100	%	х		✓
3B1Ah	0	V	UINT16	cm26	max limit rev motor poti	10000	0	10000	1	100	%	Х		✓
3B1Bh	0	V	UINT32	cm27	motor poti ref value	128000	0	1000	1	1	rpm	х		✓
3B1Ch	0	V	INT16	cm28	motor poti reset value	10000	-10000	0	1	100	%	Х		✓
3B1Dh	0	V	UINT16	cm29	motor poti inc gain [%/s]	65535	0	10	1	100		Х		✓
3B1Eh	0	V	UINT16	cm30	motor poti dec gain [%/s]	65535	0	10	1	100		х		✓
3B1Fh	0	V	UINT16	cm31	inc motor poti input	65535	0	0	1	1		х		✓
3B20h	0	V	UINT16	cm32	dec motor poti input	65535	0	0	1	1		х		✓
3B21h	0	V	UINT16	cm33	reset motor poti input	65535	0	0	1	1		х		✓
3B22h	0	V	UINT16	cm34	activate jog mode	65535	0	0	1	1		Х		✓
3B23h	0	V	UINT16	cm35	jog positive	65535	0	0	1	1		х		✓
3B24h	0	V	UINT16	cm36	jog negative	65535	0	0	1	1		х		✓
3B25h	0	V	UINT16	cm37	activate jog speed 2	65535	0	0	1	1		х		✓
3B26h	0	V	UINT16	cm38	jog step mode	65535	0	0	1	1		х		✓
3B29h	0	V	UINT32	cm41	jog speed 1 positive	128000	0	0	1	1	rpm	х		✓
3B2Ah	0	V	UINT32	cm42	jog speed 1 negative	128000	0	0	1	1	rpm	х		✓
3B2Bh	0	V	UINT32	cm43	jog speed 2 positive	128000	0	0	1	1	rpm	х		✓
3B2Ch	0	V	UINT32	cm44	jog speed 2 negative	128000	0	0	1	1	rpm	Х		✓
3B2Dh	0	V	UINT32	cm45	jog step distance	2147483647	0	0	1	1		х		✓
3B2Eh	0	V	UINT16	cm46	jog mode options	63	0	0	1	1				✓
3B30h	0	V	INT32	cm48	jog acceleration for [s-2]	1747626666	1	2000	1	100		х		✓
3B31h	0	V	INT32	cm49	jog deceleration for [s-2]	1747626666	1	2000	1	100		х		✓
3B32h	0	V	INT32	cm50	jog acceleration rev [s-2]	1747626666	1	2000	1	100		х		✓
3B33h	0	V	INT32	cm51	jog deceleration rev [s-2]	1747626666	1	2000	1	100		х		✓
3B34h	0	V	INT32	cm52	jog for acc jerk ls [s-3]	104857600	50	10000	1	100		х		✓
3B35h	0	V	INT32	cm53	jog for acc jerk hs [s-3]	104857600	50	10000	1	100		х		✓

cm: cust	tomer m	node												
Index	Sub- ldx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
3B36h	0	V	INT32	cm54	jog for dec jerk hs [s-3]	104857600	50	10000	1	100		х		✓
3B37h	0	V	INT32	cm55	jog for dec jerk ls [s-3]	104857600	50	10000	1	100		х		✓
3B38h	0	V	INT32	cm56	jog rev acc jerk ls [s-3]	104857600	50	10000	1	100		х		✓
3B39h	0	V	INT32	cm57	jog rev acc jerk hs [s-3]	104857600	50	10000	1	100		х		✓
3B3Ah	0	V	INT32	cm58	jog rev dec jerk hs [s-3]	104857600	50	10000	1	100		х		✓
3B3Bh	0	V	INT32	cm59	jog rev dec jerk ls [s-3]	104857600	50	10000	1	100		х		✓
3B3Ch	0	V	UINT8	cm60	jog ramp mode	255	0	8	1	1		х		✓
3B3Dh	0	V	UINT16	cm61	jog mode state				1	1		х	х	✓
3B3Eh	0	V	INT16	cm62	motor poti actual value				1	100	%	х	х	✓

Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	0		UINT8		safety module 3				1	1		Х	х	
	1		UINT32		enabled safety function				1	1			Х	
	2		UINT32		bus safety function state				1	1			Х	
	3		UINT32		global safety state				1	1			Х	
	4		UINT32		error state				1	1			х	
	5		UINT32		last error / warning				1	1			Х	
	6		UINT32		bus error				1	1			х	0004
3C03h	7	ST	UINT32	sm03	I/O state				1	1			Х	9301, 9303
	8		INT32		encoder speed				1	8192	rpm		х	3303
	9		INT32		encoder position (full rounds)				1	1			Х	
	10		UINT32		encoder position (partial rounds)				1	1			х	
	11		UINT32		safety module date and time	4294967295	0	0	1	1	*1			
	12		UINT8		safety module led blinking	1	0	0	1	1				
	13		UINT8		safety fieldbus type				1	1			Х	
	14		UINT8		safety fieldbus data length				1	1			Х	
	0		UINT8		safety module 5				1	1		х	х	
	1		UINT32		enabled safety function				1	1			Х	
	2		UINT32		bus safety function state				1	1			Х	
	3		UINT32		global safety state				1	1			Х	
	4		UINT32		error state				1	1			х	
	5		UINT32		last error / warning				1	1			Х	
	6		UINT32		bus error				1	1			Х	9305.
	7		UINT32		I/O state				1	1			Х	9306,
3C05h	8	ST	INT32	sm05	encoder (-less) speed				1	8192	rpm		Х	9307,
	9		INT32		encoder (-less) position (full rounds)				1	1			х	9308
	10		UINT32		encoder (-less) position (partial rounds)				1	1			х	
	11		UINT32		safety module date and time	4294967295	0	0	1	1	*1			
	12		UINT8		safety module led blinking	1	0	0	1	1				
	13		UINT8		safety fieldbus type				1	1			х	
	14		UINT8		safety fieldbus data length				1	1			Х	

sm: safe	ty mod	ule par	ameters											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	15		UINT16		electrical current in percent (0.001% resolution)				1	1000			х	
	16		INT32		electrical current speed				1	8192	rpm		х	
	17		INT32		electrical current position actual value full rounds				1	1			х	
	18		UINT32		electrical current position actual value partial rounds				1	1			х	
3C0Ah	0	V	UINT8	sm10	inverter reaction in case of "fail safe"	8	0	7	1	1		х		9301, 9303, 9305, 9306, 9307, 9308
3C0Bh	0	V	UINT8	sm11	inverter reaction in case of "STO"	8	0	7	1	1		х		9301, 9303, 9305, 9306, 9307, 9308
3C0Ch	0	V	UINT8	sm12	opt. inverter reaction in case of "STO" or "fail safe"	1	0	0	1	1		x		9301, 9303, 9305, 9306, 9307, 9308
3C12h	0	V	INT8	sm18	log read out type	8	-1	-1	1	1				9301, 9303, 9305, 9306, 9307, 9308
3C13h	0	V	INT8	sm19	log read out state				1	1		x	х	9301, 9303, 9305, 9306, 9307, 9308

sm: safet	ty mod	ule para	ameters											
Index	Sub- Idx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	0		UINT8		log entry 0				1	1		Х	х	
	1	•	UINT32		date and time				1	1	*1	Х	х	9301,
	2	•	INT32		position				1	1		Х	х	9303,
3C14h	3	ST	INT32	sm20	speed				1	8192	rpm	Х	х	9305,
001111	4	0.	UINT16	011120	time slice per 62.5 us				1	1		Х	х	9306,
	5		UINT32		details of "(bus) safety function request"				1	1		х	х	9307, 9308
	6	•	UINT32		details of "error"				1	1		Х	х	
	0		UINT8		log entry 1				1	1		Х	х	
	1		UINT32		date and time				1	1	*1	Х	х	9301,
	2		INT32		position				1	1		Х	х	9303,
3C15h	3	ST	INT32	sm21	speed				1	8192	rpm	Х	х	9305,
001011	4	0.	UINT16	011121	time slice per 62.5 us				1	1		Х	х	9306,
	5		UINT32		details of "(bus) safety function request"				1	1		х	х	9307, 9308
	6		UINT32		details of "error"				1	1		Х	х	
	0		UINT8		log entry 2				1	1		Х	Х	
	1		UINT32		date and time				1	1	*1	Х	Х	9301,
	2		INT32		position				1	1		Х	Х	9303,
3C16h	3	ST	INT32	sm22	speed				1	8192	rpm	Х	Х	9305,
	4		UINT16		time slice per 62.5 us				1	1		Х	х	9306,
	5		UINT32		details of "(bus) safety function request"				1	1		х	х	9307, 9308
	6		UINT32		details of "error"				1	1		Х	х	
	0		UINT8		log entry 3				1	1		Х	х	
	1	•	UINT32		date and time				1	1	*1	Х	х	9301,
	2		INT32		position				1	1		Х	х	9303,
3C17h	3	ST	INT32	sm23	speed				1	8192	rpm	Х	х	9305,
331111	4	Ŭ.	UINT16	511125	time slice per 62.5 us				1	1		Х	х	9306,
	5		UINT32		details of "(bus) safety function request"				1	1		х	х	9307, 9308
	6		UINT32		details of "error"				1	1		Х	х	
3C18h	0	ST	UINT8	sm24	log entry 4				1	1		Х	х	9301,

Index	Sub- Idx	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	1		UINT32		date and time				1	1	*1	х	х	9303
	2		INT32		position				1	1		Х	Х	9305
	3		INT32		speed				1	8192	rpm	Х	Х	9306
	4		UINT16		time slice per 62.5 us				1	1		Х	Х	9308
	5		UINT32		details of "(bus) safety function request"				1	1		х	х	
	6		UINT32		details of "error"				1	1		Х	Х	
	0		UINT8		log entry 5				1	1		Х	Х	
	1		UINT32		date and time				1	1	*1	Х	х	9301,
	2		INT32		position				1	1		Х	Х	9303,
3C19h	3	ST	INT32	sm25	speed				1	8192	rpm	Х	Х	9305,
001011	4	01	UINT16	011120	time slice per 62.5 us				1	1		Х	Х	9306,
	5		UINT32		details of "(bus) safety function request"				1	1		х	х	9307, 9308
	6		UINT32		details of "error"				1	1		Х	Х	
	0		UINT8		log entry 6				1	1		Х	х	
	1		UINT32		date and time				1	1	*1	Х	Х	9301,
	2		INT32		position				1	1		Х	Х	9303,
3C1Ah	3	ST	INT32	sm26	speed				1	8192	rpm	Х	Х	9305,
001741	4	01	UINT16	011120	time slice per 62.5 us				1	1		Х	х	9306,
	5		UINT32		details of "(bus) safety function request"				1	1		х	х	9307, 9308
	6		UINT32		details of "error"				1	1		Х	Х	
	0		UINT8		log entry 7				1	1		Х	х	
	1		UINT32		date and time				1	1	*1	Х	Х	9301.
	2		INT32		position				1	1		Х	Х	9303,
3C1Bh	3	ST	INT32	sm27	speed				1	8192	rpm	Х	х	9305,
30.2	4	٠.	UINT16	0	time slice per 62.5 us				1	1		Х	Х	9306,
	5		UINT32		details of "(bus) safety function request"				1	1		х	х	9307, 9308
	6		UINT32		details of "error"				1	1		Х	Х	
3C1Ch	0	ST	UINT8	sm28	log entry 8				1	1		Х	Х	9301,
3C ICII	1	31	UINT32	511120	date and time				1	1	*1	х	х	9303,

sm: safe	ty mod	ule par	ameters											
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
	2		INT32		position				1	1		Х	Х	9305,
	3		INT32		speed				1	8192	rpm	Х	Х	9306, 9307,
	4		UINT16		time slice per 62.5 us				1	1		Х	Х	9307,
	5		UINT32		details of "(bus) safety function request"				1	1		х	х	
	6		UINT32		details of "error"				1	1		Х	Х	
	0		UINT8		log entry 9				1	1		Х	Х	
	1		UINT32		date and time				1	1	*1	Х	Х	9301,
	2		INT32		position				1	1		Х	Х	9303,
3C1Dh	3	ST	INT32	sm29	speed				1	8192	rpm	Х	Х	9305,
OOTBII	4	01	UINT16	311123	time slice per 62.5 us				1	1		Х	Х	9306,
	5		UINT32		details of "(bus) safety function request"				1	1		х	х	9307, 9308
	6		UINT32		details of "error"				1	1		Х	Х	

ai: advar	nced ide	ent												
Index	Sub-	CAN	Туре	IDtxt	Name	Upper limit	Lower limit	Default value	Mult.	Div	Unit	PD	RO	EOA D
3A00h	0	V	UINT16	ai00	freq. ident	65535	0	1000	1	1	Hz	х		✓
3A01h	0	V	UINT16	ai01	freq.decoup	65535	0	500	1	1	Hz	х		✓
3A02h	0	V	UINT32	ai02	amp. ident	2139095039	0	1101004800	1	1	V	х		✓
3A03h	0	V	UINT32	ai03	amp. decoup	2139095039	0	1092616192	1	1	V	х		✓
3A04h	0	V	UINT8	ai04	set RhoDC mode	1	0	0	1	1		х		✓
3A05h	0	V	UINT32	ai05	RhoDC[°]	2139095039	0	0	1	1		х		✓
3A06h	0	V	UINT32	ai06	Isd ref.	2139095039	0	0	1	1	Α	х		✓
3A07h	0	V	UINT32	ai07	Isq ref.	2139095039	0	0	1	1	Α	х		✓
3A08h	0	V	UINT8	ai08	ident start	1	0	0	1	1		х		✓
3A09h	0	V	UINT32	ai09	RhoHF[°]	2139095039	0	0	1	1		х		✓
3A0Ah	0	V	UINT32	ai10	theta1				1	1		х	х	✓
3A0Bh	0	V	UINT32	ai11	theta2				1	1		х	х	✓
3A0Ch	0	V	UINT32	ai12	theta3				1	1		х	х	✓
3A0Dh	0	V	UINT32	ai13	L				1	1	mH	х	х	✓
3A0Eh	0	V	UINT8	ai14	ready flag				1	1		х	х	✓
3A0Fh	0	V	UINT8	ai15	USearch start	1	0	0	1	1		х		✓
3A10h	0	V	UINT32	ai16	USearch I ref.	2139095039	0	0	1	1	Α	х		✓
3A11h	0	V	UINT32	ai17	USearch result				1	1	V	х	х	✓
3A12h	0	V	UINT8	ai18	USearch info				1	1		х	х	✓
3A13h	0	V	UINT8	ai19	ident coeff.				1	1		х	х	✓
3A14h	0	V	INT32	ai20	Ud				1	1		х	х	✓
3A15h	0	V	INT32	ai21	Uq				1	1		х	х	✓
3A16h	0	V	INT32	ai22	Id				1	1		х	х	✓
3A17h	0	V	INT32	ai23	Iq				1	1		х	х	✓

14.2 History of changes

From revision	Chapter	Change
	Start	Programming manual F6 2.8
	4.2	Extension for brake handling
	7.2.3	Added note on relay for P card
00	7.2.9	Extension table for do01 / do02
	6.1.2.3	Explanation of supported endat encoders extended
	4.5.1.1.1	Activation of the braking transistor in case of extreme overvoltage
	4.5.2	Warning notice extended
	4.4.19	Phase failure detection added
	4.8.1.1	Start Posi with start speed added
	4.8.1.3	Ramps in posi module, reference to co32 inserted
	7.2	Chapter completely revised and the new function "linked switching conditions" added
	8	New function => Timer
	10.2.3	Addition to communication mode, FTP via fieldbus interface
	4.4.6.2	Correction motor protection function
	5.8.1	Addition of "suppressed error" in ru75
	13	Extension Selection Recipe
	4.4.25	MinCurrent
	6.2.15.3.1	Notes on the stabilising current
	6.1	New: Evaluation of inductive sensors. Extended parameters ec16, ec17, ec35
	6.1	New: Support for linear encoders. Extended parameters ec16, ec17, ec02, ec18, ec31. New parameter: ec50
	6.1	New: Support of multiturn encoders with battery buffering: Extended parameters ec36, ec17, ec01
	6.1	Changed: Calculation of ec17 and ec31 after passing one complete revolution with two zero signals for non-absolute encoders with zero signal. Position monitoring and correction are already active after the first zero signal has been passed.
	6.1	Display of operating state error sources for EnDat encoders, extended parameter ec18
01	7.2.11	Supplement Description do28
	8.2.2	Correction Description Counting unit configuration

Benelux | KEB Automation Benelux Dreef 4 - box 4 1703 Dilbeek Belgium

Tel: +32 2 447 8580

E-Mail: info.benelux@keb.de Internet: www.keb.de

Brazil | KEB SOUTH AMERICA - Regional Manager Rua Dr. Omar Pacheco Souza Riberio, 70 CEP 13569-430 Portal do Sol, São Carlos Brasilien Tel: +55 16 31161294 E-Mail: roberto.arias@keb.de

China | KEB Power Transmission Technology Co. Ltd. No. 435 QianPu Road Chedun Town Songjiang District 201611 Shanghai P.R. China

Tel: +86 21 37746688 Fax: +86 21 37746600 E-Mail: info@keb.cn Internet: www.keb.cn

Germany | Geared Motors

KEB Antriebstechnik GmbH
Wildbacher Straße 5 08289 Schneeberg Germany
Telefon +49 3772 67-0 Telefax +49 3772 67-281
Internet: www.keb-drive.de E-Mail: info@keb-drive.de

France | Société Française KEB SASU Z.I. de la Croix St. Nicolas 14, rue Gustave Eiffel 94510 La Queue en Brie France Tel: +33 149620101 Fax: +33 145767495

E-Mail: info@keb.fr Internet: www.keb.fr

United Kingdom | KEB (UK) Ltd.

5 Morris Close Park Farm Indusrial Estate Wellingborough, Northants, NN8 6 XF United Kingdom Tel: +44 1933 402220 Fax: +44 1933 400724

E-Mail: info@keb.co.uk Internet: www.keb.co.uk

Italien | KEB Italia S.r.l. Unipersonale

Via Newton, 2 20019 Settimo Milanese (Milano) Italia

Tel: +39 02 3353531 Fax: +39 02 33500790 E-Mail: info@keb.it Internet: www.keb.it

Japan | KEB Japan Ltd.

15 - 16, 2 - Chome, Takanawa Minato-ku

Tokyo 108 - 0074 Japan

Tel: +81 33 445-8515 Fax: +81 33 445-8215 E-Mail: <u>info@keb.ip</u> Internet: www.keb.jp

Austria | KEB Antriebstechnik Austria GmbH Ritzstraße 8 4614 Marchtrenk Austria

Tel: +43 7243 53586-0 Fax: +43 7243 53586-21 E-Mail: <u>info@keb.at</u> Internet: www.keb.at

Poland | KEB Automation KG

Tel: +48 60407727

E-Mail: roman.trinczek@keb.de Internet: www.keb.de

Russian Federation | KEB RUS Ltd.

Lesnaya str, house 30 Dzerzhinsky MO 140091 Moscow region Russian Federation Tel: +7 495 6320217 Fax: +7 495 6320217 E-Mail: info@keb.ru Internet: www.keb.ru

Switzerland | KEB Automation AG

Witzbergstraße 24 – 8330 Pfäffikon/ZH Switzerland Tel: +41 43 2886060 Fax: +41 43 2886088 E-Mail: info@keb.ch Internet: www.keb.ch

Spain | KEB Automation KG

c / Mitjer, Nave 8 - Pol. Ind. LA MASIA 08798 Sant Cugat Sesgarrigues (Barcelona) Spain Tel: +34 93 8970268 Fax: +34 93 8992035

E-Mail: vb.espana@keb.de

Republic of Korea | KEB Automation KG Room 1709, 415 Missy 2000 725 Su Seo Dong Gangnam Gu 135-757 Seoul Republic of Korea Tel: +82 2 6253 6771 Fax: +82 2 6253 6770

E-Mail: vb.korea@keb.de

Czech Republic | KEB Automation GmbH Videnska 188/119b 61900 Brno Czech Republic

Tel: +420 544 212 008

E-Mail: info@keb.cz Internet: www.keb.cz

United States | KEB America, Inc.

5100 Valley Industrial Blvd. South Shakopee, MN 55379 USA

Tel: +1 952 2241400 Fax: +1 952 2241499

Automation mit Drive

www.keb.de

KEB Automation KG Südstsraße 38 32683 Barntrup Tel. +49 5263 401-0 E-Mail: info@keb.de